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Abstract: The possibility of designing effi cient, ex-post incentive compatible,
single valued, direct mechanisms depends crucially on the domain of types and
preferences on which they are defined. In a framework that allows for interde-
pendent types, we identify two classes of domains. For those called knit, we show
that only constant mechanisms can be ex post (or even interim) incentive com-
patible. Then we prove that ex post incentive compatible mechanisms defined on
domains called partially knit are effi cient. For private values, this implies that
strategy proof mechanisms will also be group strategy-proof. We provide voting,
matching, auction examples where our theorems apply.
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1 Introduction

A major concern when designing economic mechanisms is to provide agents with incentives
to reveal their true characteristics. Setting aside some obviously unsatisfactory solutions,
it is well understood that attaining this objective is not always possible. Moreover, when
it is, a conflict often arises between the mechanisms’effi ciency and incentive compatibility.
These generic statements hold for different formulations of the mechanism design problem,
and for various concepts of equilibrium. In this paper we concentrate in the possibility of
designing ex-post incentive compatible and Pareto effi cient direct mechanisms. As a result,
we do not need to introduce Bayesian updating, and can work in a framework where agents’
preferences are ordinal.1

We start from the remark that a mechanism can only meet interesting lists of desiderata if
its domain of definition is somehow restricted, and we identify domains on which satisfactory
direct mechanisms can be defined, and others where they cannot.2 In many cases, restricted
domains arise from assumptions regarding the structure of alternatives, the dimensionality
of types, or the properties of utility functions. And these assumptions, in turn, are often
suggested by the applications that the modeler has in mind. Our restricted domains are
defined quite differently. We require that if one domain contains certain type profiles, then
some other well-defined profiles must also belong to it. The classes of domains that we’ll now
describe informally, and rigorously define in the next section, are suggested from a careful
analysis of a variety of possibility and impossibility results that arise in different fields of
application and may look quite unrelated at first glance. Our approach allows us to abstract
from the specifics and to identify essential and common characteristics of domains, which
define much of the frontier between possibility and impossibility.
We consider the general case where agents’types, hence their preferences, can be inter-

dependent. In that case, the profile of individual preferences may only be fully determined
once all agents know the joint profile of types, through what we call the preference function.
Let’s be specific about the demands we impose on mechanisms, in order to consider them

satisfactory. One first attractive and well-studied requirement is that of ex post incentive
compatibility, guaranteeing truthful revelation of types to be a Nash equilibrium in all the
games that result from any specification of possible type profiles. We also introduce a second
concept of ex post group incentive compatibility under which truthful revelation is required
to be a strong Nash equilibrium. And we impose an additional condition on mechanisms that
we call respectfulness, which will be needed for some of our applications but will trivially
hold in other cases.

1The study of incentive compatibility in Bayesian terms was started by d’Aspremont and Gérard-Varet
(1979), and Arrow (1979), and its appropriate formulation and results depend on the information that
will be available to the agents at the time where the analysis is carried out. The case of interdependent
types was first studied by D’Aspremont, Crémer, and Gérard-Varet (1990). The notion of ex post incentive
compatibility corresponds to the time where agents have received all possible information, and can be defined
without attributing cardinal utility to agents, as it does not require Bayesian update. See Jackson (2003).

2The expression "domain restriction" is mostly used in social choice theory, where type profiles are in
fact preference profiles. But the need to limit attention to certain subsets of types or preferences also holds
for other environments, where the word domain restriction is less standard. For example, assumptions of
convexity, separability, continuity or others can act as restrictions on other kinds of mechanisms.
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Here is an informal overview of our definitions and results.
We say that a domain of type profiles is knit if it is possible to connect all pairs of profiles

it contains through specific sequences of type transformations, whose induced changes in
preference profiles meet adequate conditions. A domain is partially knit if it allows the same
sort of connection between a smaller but still well defined subset of pairs of its type profiles.3

We present two main results, each one based on the consideration of domains satisfying
one of our two conditions.
Our Theorem 1 is in the vein of impossibility results. It states that only the constant

mechanism can be ex post incentive compatible and respectful4 if its domain of definition is
knit. In fact, the result only applies to the case of interdependent preferences because, as
we prove later on, no domain of types can be knit in the particular case of private values.
The informed reader will observe that the conclusion of our theorem is the same that was
obtained by Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006), but the analogy stops
here, since the context and the assumptions in each case are very different. Also notice
that, since we work with single valued direct mechanisms, our environments are separable in
the sense of Bergemann and Morris (2005), and their Corollary 1 applies: no mechanism is
interim incentive compatible unless it is ex post incentive compatible. Because of that, our
Theorem 1 has direct implications on the weaker interim notion, with no need to be explicit
about agents’beliefs.
Our Theorem 2 can be read as being positive or negative, depending on the specific

context of application. It states that in partially knit domains all respectful and ex post
incentive compatible mechanisms will also be ex post incentive compatible. Notice that,
unlike our previous result, this one applies both in the case of interdependent types, and also
in that of private values. Since ex post group incentive compatibility implies Pareto effi ciency
on the range, the theorem points at the fact that the generally assumed incompatibility
between effi ciency and the provision of good incentives may be sometimes avoided, under
circumstances whose interest depends crucially on the domains of types and on the range of
the functions under consideration. For example, in domains for which the only admissible ex
post incentive compatible mechanisms are dictatorial, hence Pareto effi cient, the conclusion
of our theorem, although true, is not interesting. But there are also interesting partially knit
domains admitting attractive ex post incentive compatible mechanisms. For those, Theorem
2 explains why Pareto effi ciency can be achieved, along with good incentive properties. It
is also important to recall that, in private values cases, ex post incentive compatibility is
equivalent to strategy-proofness. Likewise, ex post group incentive compatibility becomes
equivalent to strong group strategy-proofness. Hence, a corollary for the case of private
values is that, under the conditions of our second theorem, individual and strong group
strategy-proofness become equivalent. This parallels results that we obtained in Barberà,

3The purpose of our introduction is to present the reader with a general roadmap. The details regarding
what we exactly mean by the terms connecting pairs of type profiles, or adequate conditions are provided
in the formal definitions in Section 2, and clearly illustrated in the analysis of examples of applicatons in
Appendix B.

4Again, we leave the definition of respectfulness for Section 2, and provide examples of mechanisms
satisfying it in Section 4 and Appendix B.
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Berga, and Moreno (2010, 2016) connecting individual and weak group strategy-proofness.5

Our discussion has been abstract till now, but we already said that our results are based
in a careful analysis of a variety of problems that arise in different settings, and in spe-
cific models that are inspired by essential contributions to several fields of application. We
illustrate this by providing examples of situations where our results apply. The examples
come in pairs. Two of them refer to deliberative juries and are inspired in our reading of
Austen-Smith and Feddersen (2006). Another two address the problem of assigning indivis-
ible objects as in Che, Kim, and Kojima (2015). The last two examples refer to auctions,
following the trail of Dasgupta and Maskin (2000) and Jehiel, Meyer-Ter-Vehn, Moldovanu,
and Zame (2006).
We attach much importance to these examples for several reasons.
One reason is that they show the unifying power of our approach. The models we get

inspiration from look very different from each other, because they describe the types of agents
in terms that are specific to the specific application. Yet our conditions and conclusions apply
to all of them at a time. This is because we have arrived at the abstract formulation of our
domain restrictions by scrutinizing what is common in the nature of these settings, and
many others, for which results about ex-post incentive compatibility and related concepts
had been carefully explored.
A second reason is that, in each of the applications, we can provide blood and flesh to the

general and rather abstract notion of a preference function. We do that by identifying as a
special part of each agent’s type the specific rules that translate the information contained in
the profile of types into the preferences of that agent. This separation is unnecessary for the
validity of our general results, but it allows us to be specific about the different considerations
that lead to the relevant preference functions considered in each of our examples.
A third and very important reason to present the examples in pairs is because they

allow us to show that the frontier between worlds where impossibility prevails, and others
where ex-post incentive compatibility is compatible with a good degree of effi ciency can be
surprisingly thin. For each one of our fields of application, we present examples that look
rather similar and yet belong to one of these worlds or to the other, depending on whether
their domain of definition is or is not knit. Since knit domains are also partially knit, our
Theorem 2 applies also there, if only to the constant function. But our examples clarify that
attractive mechanisms may exist on partially knit ranges.
We do not claim that checking for our domain conditions will always be easy, though

it may be quite feasible in some cases. At any rate, that is not the purpose of our exer-
cise. Rather, we want to prove that the essence of diffi culties or the possibilities that one
encounters when designing ex post incentive compatible mechanisms lies in the nature of
restrictions that may arise from many specific characteristics of the different models and
applications, but reduce to a common ground in the final analysis. And we impose an ad-
ditional condition on mechanisms that we call respectfulness. This condition only applies
in environments where agents are indifferent among alternatives, and then does not allow
any agent to change the consequences for others by means of her actions, while not affecting

5A pioneering paper by Shenker (1993) investigated the connections between individual and group
strategy-proof non-bossy social choice rules in economic environments. For a recent reference on effi ciency
in general environments, see Copic (2017).
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their own level of satisfaction. But even in those cases where it has bite, it only applies to
situations where the agents’preferences change in specific ways, and is thus a relatively mild
requirement, that can be satisfied by attractive rules, as we shall see through our examples
in Section 4.6

The paper proceeds as follows. In the next Section 2 we present the general framework and
define the domain restrictions and the type of mechanisms we shall concentrate on. Section
3 contains the general results and their proofs. Section 4 provides examples of applications
and ties them in with our general framework. Appendix A and B contain proofs of results
presented in Section 2 and 4, respectively.

2 The model

Let N = {1, 2, ..., n} be a finite set of agents with n > 2 and A be a set of alternatives.
Let R̃ be the set of all complete, reflexive, and transitive binary relation on A. Let Ri ∈ R̃.
denote agent i’s preferences, and Pi and Ii be the strict and the indifference part of Ri,
respectively. For any x ∈ A, L(Ri, x) = {y ∈ A : xPiy} is the strict lower contour set of Ri
at x, U(Ri, x) = {y ∈ A : yPix} the strict upper contour set of Ri at x, and E(Ri, x) =
{y ∈ A : yIix} is the indifference class of Ri at x.
It will be useful to pay attention to the relationship between certain pairs of preferences.

Definition 1 We say that R′i ∈ R̃ is an x-monotonic transform of Ri ∈ R̃ if there exists
a set ERix ⊆ E(Ri, x), x ∈ ERix such that the following conditions hold:
(i) for any z ∈ ERix , ERix ⊆ E(R′i, z),
(ii) for any z ∈ ERix , for any y ∈ A\ERix , [zRiy ⇒ zP ′iy].

Equivalently, (ii) can be written in terms of lower contour sets as follows: for any z ∈ ERix ,
L(R′i, z) ⊇ L(Ri, z)\ERix . Note that no constraint is imposed on elements in U(Ri, z) with
respect to their order with z according to R′i.
In words: R′i is an x-monotonic transform of Ri if there exists a subset ERix of x’s

indifference class in Ri, containing x, such that the relative position of its elements has
weakly improved when going from Ri to R′i.

7

There is an special case of x-monotonic transforms of preferences that is easy to identify
and we want to single out.

Definition 2 We say that R′i ∈ R̃ is an x-reshuffl ing of Ri ∈ R̃ if (i) L(Ri, x) = L(R′i, x),
and (ii) U(R′i, x) = U(Ri, x).

6Respectfulness when applied to private values is a distant relative of non-bossiness (Satterthwaite and
Sonnenschein, 1981), but much less demanding than this or other similar conditions analyzed in Thomson
(2016). It is mostly required to avoid manipulations by one agent that could benefit others while not gaining
anything in exchange. This is an analogue condition to the one we use in Barberà, Berga, and Moreno (2016)
but requiring here invariance in outcomes instead of indifferences in outcomes.

7In our previous paper Barberà, Berga, and Moreno (2012), we present a similar condition but with
additional requirements.
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In words: the indifference class, the strict upper and strict lower contour set of Ri and
R′i at x coincide. However, no restrictions are imposed on the order of alternatives within
the strict upper and lower contour sets.
Observe that if R′i ∈ R̃ is an x-reshuffl ing of Ri ∈ R̃, if R′i is an x-monotonic transform

of Ri such that ERix = E(Ri, x) = E(R′i, z), and L(Ri, x) = L(R′i, x).
Example 1 exhibits a variety of possible monotonic transforms.

Example 1 Types of monotonic transforms.
For A = {x, y, z, t, w}, let’s represent preferences by an ordered list from better to worse,
with parenthesis in case of indifferences. Then,
(i) going from preference (xw)(yz)t to wx(yz)t is an m-reshuffl ing (thus, an m-monotonic
tranform) for m ∈ {y, z, t}. The preference wx(yz)t is also a w-monotonic transform of
(xw)(yz)t, but not an x-monotonic transform of (xw)(yz)t.
(ii) going from preference (xw)(yz)t to x(yz)wt is a y-monotonic transform, but not a y-
reshuffl ing. Note that x(yz)wt is also a z and an x-monotonic transform of (xw)(yz)t.
However, x(yz)wt is not a w-monotonic transform of (xw)(yz)t.
(iii) changing from (xw)(yz)t to (yxw)zt is a y-monotonic transform, but not a y-reshuffl ing.
However, (yxw)zt is not an m-monotonic transform of (xw)(yz)t for m ∈ {x,w, z}.

In each application, the preferences of agents may be restricted a priori to satisfy certain
conditions. In what follows, we denote by Ri the set of those preferences that are allowed
for individual i.8

Each agent i ∈ N is endowed with a type θi belonging to a set Θi. Each θi includes all
the information in the hands of i. We denote by Θ = ×i∈NΘi the set of type profiles. A type
profile is an n-tuple θ = (θ1, ..., θn). We will write θ = (θC , θN\C) when we want to stress the
role of coalition C in N .
Although the information about agent’s preferences is already contained in each type

profile, we find it useful to have a language that allows us to explicitly differentiate between
the overall information contained in the types and the specific information that refers to
preferences. This is often achieved in the literature by predicating that agents are endowed
with a utility function that depends on the profile of types. Since we work with ordinal
preferences, we prefer to formalize this dependence by means of rules of the form R : Θ→
R ≡×i∈N Ri, Ri ⊆ R̃, that assigns a preference profile to each type profile and that we call
preference functions.9 We will refer to R(θ) as the preference profile induced by θ. Ri(θ) will
stand for the induced preferences of agent i at type profile θ. Notice that the domain of R is
a Cartesian product including all possible type profiles, but its range may be a non-Cartesian
strict subset of ×i∈NRi.
Following the standard use, we will call private values environments those where each

agent’s component of the preference function only depends on her type. That is, Ri(θ) =

8Preferences may be required to be strict, or additively separable, for example. Notice that Ri may not
be the same for different i’s, as in the case of selfish preferences in economies with private goods.

9In all our applications, we will show that it is convenient to subdivide an individual’s type into two
separate parts. One part will stand for all the elements of information that the individuals accumulate, the
other will stand for the idiosyncratic functional relation with which each individual will process her available
information in order to form her preferences over alternatives. We develop this language in Section 4.
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Ri(θi) for each agent i ∈ N and θ ∈ Θ. Otherwise, we are in interdependent values environ-
ments.
We now introduce an example which adapts in ordinal terms the one proposed by Berge-

mann and Morris (2005) as their Example 1. We shall use it to illustrate several ideas along
this section.

Example 2 An interdependent values example with a non-Cartesian range.
Let N = {1, 2} and A = {a, b, c}. Each agent i has two possible types: Θi = {θi, θi}. The
preference function R is defined in Table 1. We write, in each cell, the preferences of both
agents for a given type profile as in Example 1. Observe that agent 2’s preferences over b
and c depend on agent 1’s type: bP2(θ1, θ2)c while cP2(θ1, θ2)b, that is, we are in an interde-
pendent values environment.

R θ2 θ2

θ1
R1(θ1, θ2) R2(θ1, θ2)
acb b(ac)

R1(θ1, θ2) R2(θ1, θ2)
bca a(bc)

θ1
R1(θ1, θ2) R2(θ1, θ2)
c(ab) c(ab)

R1(θ1, θ2) R2(θ1, θ2)
c(ab) c(ab)

Table 1. Preference function for Example 2.
To show that the range of R is not a Cartesian product, note that R1 = {acb, bca, c(ab)} and
R2 = {b(ac)), a(bc), c(ab)} but the preference profile (acb, a(bc)) is not in the range of the
preference function R.

Notice that Bergemann and Morris (2005) do not provide any reason why the preference
function is the one they propose. That is not necessary for much of our general analysis.
Yet, as we shall see later (Section 4), in many applications, the relevant preference function
can be derived from the types in specific manners that clarify its economic meaning.
Our results focus on direct mechanisms. In fact, the properties we discuss are best

analyzed with reference to the direct mechanism associated to any general one that might
be described in terms of different message spaces and outcome functions.
A direct mechanism on Θ is a function f : Θ → A such that f(θ) ∈ A for each θ ∈

Θ. From now on, we drop the term "direct" and refer to mechanisms, without danger of
ambiguity.
Notice that, by letting Θ be the domain of f , we implicitly assume that all type profiles

within this set are considered to be feasible by the designer.
Our results will focus on the characteristics of the domains on which mechanisms are

defined.
We shall now identify two important conditions on domains (Definitions 5 and 6) that may

or may not be satisfied by given sets of type profiles. Both conditions start by considering
sequences of type profiles that result from changing the type of individual agents, one at a
time. These sequences are identified in detail in Definitions 3 and 4.

Let S =
{
θSi(S,1), ..., θ

S
i(S,tS)

}
∈

tS∏
h=1

Θi(S,h) be a sequence of individual types of length tS.

Agents may appear in that sequence several times or not at all. I(S) = (i(S, 1), ..., i(S, tS))
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is the sequence of agents whose types appear in S and i(S, h) is the agent in position h in S.

Given θ ∈ Θ and S =
{
θSi(S,1), ..., θ

S
i(S,tS)

}
∈

tS∏
h=1

Θi(S,h), we consider the sequence of type

profiles mh(θ, S) that results from changing one at a time the types of agents according to
S, starting from θ. Formally, mh(θ, S) ∈ Θ is defined recursively so that m0(θ, S) = θ and

for each h ∈ {1, ..., tS}, mh(θ, S) =
((
mh−1(θ, S)

)
N\i(S,h) , θ

S
i(S,h)

)
.

Definition 3 Let θ ∈ Θ, S =
{
θSi(S,1), ..., θ

S
i(S,tS)

}
∈

tS∏
h=1

Θi(S,h) as just defined. We call the

sequence of type profiles
{
mh(θ, S)

}tS
h=0

the passage from θ to θ′ through S if mtS(θ, S) =
θ′ for θ′ ∈ Θ.

More informally, we say that θ leads to θ′ through S.
Notice that a given passage from θ to θ′ through S induces a corresponding sequence of

preference profiles, Rh(θ, S) for h ∈ {0, 1, ..., tS}, where for each agent i ∈ N , Rhi (θ, S) ≡
Ri
(
mh(θ, S)

)
.

We can now establish a condition on the connection between sequences of changes in
type profiles and the changes in preferences profiles that they induce.

Definition 4 Let x ∈ A, θ, θ′ ∈ Θ. We will say that the passage from θ to θ′ through S
is x-satisfactory if for each h ∈ {1, ..., tS}, Rhi(S,h) (θ, S) is an x-monotonic transform of
Rh−1i(S,h) (θ, S).

Notice that in the case of private values the order of individuals in S could be changed
and the new sequence would still serve the same purpose. This is because the changes in
type of each agent only induce changes in the preferences of this agent. By contrast, the
precise order of agents I(S) may be crucial in the case of interdependent values. We say
that x is the reference alternative when going from θ to θ′.
We use Example 2 above to illustrate the concept of satisfactory and non-satisfactory

passages.

Example 2 (continued) Satisfactory and non-satisfactory passages.
Let x = a, θ = (θ1, θ2), θ

′ = (θ1, θ2), and S =
{
θ2, θ1, θ2

}
a sequence of individual types.

Note that, I(S) = {2, 1, 2} and tS = 3. We claim that the passage from θ to θ′ through S is
a-satisfactory. To show it, we have to check that for each h ∈ {1, 2, tS = 3}, Rhi(S,h) (θ, S) is
an a-monotonic transform of Rh−1i(S,h) (θ, S).

For that, observe first that R0i(S,1) (θ, S) = R2(θ1, θ2), R
1
i(S,1) (θ, S) = R2(θ1, θ2), R

1
i(S,2) (θ, S) =

R1(θ1, θ2), R
2
i(S,2) (θ, S) = R1(θ1, θ2), R2i(S,2) (θ, S) = R2(θ1, θ2), and R3i(S,2) (θ, S) = R2(θ1, θ2).

Then, using the table in Example 2, note that the following three facts hold: R2(θ1, θ2) is an
a-monotonic transform of R2(θ1, θ2). Moreover, R1(θ1, θ2) is an a-monotonic transform of
R1(θ1, θ2). Finally, R2(θ1, θ2) is an a-reshuffl ing of R2(θ1, θ2).
Let x = a, θ = (θ1, θ2), θ

′ = (θ1, θ2), and S =
{
θ1, θ2

}
a sequence of individual types.

Note that, I(S) = {1, 2} and tS = 2. We claim that the passage from θ to θ′ through S is
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not a-satisfactory. To show it, observe that for h = 1, Rhi(S,h) (θ, S) is not an a-monotonic

transform of Rh−1i(S,h) (θ, S). By definition, R1i(S,1) (θ, S) = R1(θ1, θ2), R
0
i(S,1) (θ, S) = R1(θ),

and R1(θ1, θ2) is not an a-monotonic transform of R1(θ) since L(R1(θ1, θ2)) + L(R1(θ)).

Armed with these definitions we now identify the first restriction on sets of types profiles
that we are interested in.

Definition 5 We say that Θ is knit if for any two pairs formed by an alternative and a
type profile each, (x, θ), (z, θ̃) ∈ A × Θ, θ 6= θ̃, there exist θ′ ∈ Θ and sequences of types S
and S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from θ̃
to θ′ through S̃ is z-satisfactory.

Notice that in this definition x and z can be the same. Two important remarks are
in order. First, whether or not a domain is knit will depend on the preference function
through satisfactoriness. Moreover, when going through proofs of knitness (see Remark 1,
for example) the reader can observe that for some pairs formed by an alternative and a type
profile each, there exist several type profiles and passages that work. Knitness requires only
the existence on one such way. Here is an example.

Remark 1 The domain in Example 2 is knit.

To check that the domain Θ =
{

(θ1, θ2), (θ1, θ2), (θ1, θ2), (θ1, θ2)
}
is knit, we must prove that

all pairs of alternatives and types can be connected through satisfactory sequences. To do
that, we will show how to choose the appropriate ones for two specific cases, and then argue
that all others can be reduced essentially to one of the patterns we shall follow.
Case 1. (x, θ) = (a, (θ1, θ2)) and (z, θ̃) = (b, (θ1, θ2)).
Define θ′ = θ̃ = (θ1, θ2), S =

{
θ2, θ1, θ2

}
(thus, I(S) = {2, 1, 2} and tS = 3), S̃ = ∅ (thus,

I(S̃) = ∅ and tS̃ = 0). Note that since θ′ = θ̃, then θ̃ trivially leads to θ′ through S̃ and
this passage from θ̃ to θ′ is b-satisfactory. We need to show that θ leads to θ′ through S
and the passage is a-satisfactory. For that we need to observe using Table 1 that the three
(tS) following facts hold: R2(θ1, θ2) is an a-monotonic transform of R2(θ1, θ2). Moreover,
R1(θ1, θ2) is an a-monotonic transform of R1(θ1, θ2). Finally, R2(θ1, θ2) is an a-reshuffl ing of
R2(θ1, θ2).
Case 2. (x, θ) = (c, (θ1, θ2)) and (z, θ̃) = (a, (θ1, θ2)).
Define θ′ = (θ1, θ2), S =

{
θ1, θ2

}
(thus, I(S) = {1, 2} and tS = 2), S̃ =

{
θ1
}
(thus,

I(S̃) = {1} and tS̃ = 1). As above, first we need to show that θ leads to θ′ through S and
the passage is a-satisfactory. For that we need to observe using Table 1 that the two (tS)
following facts hold: R1(θ1, θ2) is a c-monotonic transform of R1(θ1, θ2). Moreover, R2(θ1, θ2)
is a c-reshuffl ing of R2(θ1, θ2).
Second, we need to show that θ̃ leads to θ′ through S̃ and the passage is a-satisfactory.
For that we need to observe using the table that R1(θ1, θ2) is an a-monotonic transform of
R1(θ1, θ2).
To finish the proof of knitness we should consider all remaining combinations of (x, θ),
(z, θ̃) ∈ A×Θ. Observe that each one of those cases can be embedded in either Case G1 or
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Case G2 below, which generalize Cases 1 and 2, respectively.
Case G1. (x, θ) and (z, θ̃) such that x ∈ {a, b}.
Case G2. (x, θ) and (z, θ̃) such that x = c.
To prove knitness for Case G1, consider θ′ = θ̃, S̃ = ∅, and S will depend on θ and
θ̃. Similarly, to prove knitness for Case G2, consider θ′ = (θ1, θ2), S =

{
θ1, θ2

}
(thus,

I(S) = {1, 2} and tS = 2), and S̃ will depend on θ and θ̃.

Our next restriction is less demanding because it only requires to connect some pairs
of type profiles, and only for some pairs of reference alternatives. That is, whether or not
a domain is partially knit will depend, as for knitness, on the preference function through
satisfactoriness but applied only to certain type profiles and alternatives.
For any θ ∈ Θ and x, z ∈ A, let C(θ, z, x) = {i ∈ N : zRi(θ)x} and C(θ, z, x) = {j ∈ N :

zPj(θ)x}.

Definition 6 We say that Θ is partially knit if for any two pairs formed by an alternative
and a type profile each, (x, θ), (z, θ̃) ∈ A×Θ, θ 6= θ̃, such that C(θ, z, x) 6= ∅, #C(θ, z, x) ≥ 2,
and θ̃j = θj for any j ∈ N\C(θ, z, x), then there exist θ′ ∈ Θ and sequences of types S and
S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to
θ′ through S̃ is z-satisfactory.

Clearly, if a domain is knit it is also partially knit.
Notice that, here again, partial knitness is satisfied as long as there is one satisfactory

passage for each relevant pair of alternatives and profiles.
Although the above definitions are general, we want to remark that essentially no domain

will be knit in private values environments, as stated in Proposition 1 and proved in Appendix
A.

Proposition 1 In a private values environment, if there exist θi, θ̃i ∈ Θi such that R(θi) 6=
R(θ̃i) for some i ∈ N , Θ is not knit.

If we think of the classical private values framework of social choice theory, where types
are identified with preferences, our Proposition 1 implies that the universal domain of strict
preferences is not knit. Yet, it is partially knit as shown in the next Proposition 2 (see the
proof in Appendix A).

Proposition 2 The universal domain of strict preferences in the classical social choice prob-
lem is partially knit.

Another interesting well-known example of a partially knit domain in the classical private
values framework of social choice is the domain of strict single-peaked preferences on a finite
set of alternatives (Moulin, 1980) which is not knit by Proposition 1. See the following
Proposition 3 proved in Appendix A.

Proposition 3 The domain of strict single-peaked preferences on a finite set of alternatives
in the classical social choice problem is partially knit.
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The domain of preferences in the classical private values framework of one-to-one match-
ing problem, where preferences are strict over individuals assignments, is also partially knit
(but again not knit). See the following Proposition 4 proved in Appendix A.

Proposition 4 The domain of preferences in the classical one-to-one matching problems is
partially knit.

Until now, we have concentrated on the properties of potential domains on which mech-
anisms may be defined. We now turn attention to some properties of the mechanisms
themselves.
We first look at incentives. Ex post incentive compatibility requires, for all agents to

prefer truthtelling at a given type profile θ, if all the other agents also report truthfully.10

Definition 7 A mechanism f is ex post incentive compatible on Θ if, for all agent
i ∈ N , θ ∈ Θ, and θ′i ∈ Θi, f(θ)Ri(θ)f(θ′i, θN\{i}).

We say that an agent i ∈ N can ex post profitably deviate under mechanism f at θ ∈ Θ if
there exists θ′i ∈ Θi such that f(θ′i, θN\{i})Pi(θ)f(θ). Note that ex post incentive compatibility
requires that no agent can profitably deviate at any type profile.
Another form of profitable deviations is by means of coalitions. Ex post group incentive

compatibility requires, for all coalition of agents, each member to prefer truthtelling at a
given type profile θ, if all the other agents outside the coalition also report truthfully.

Definition 8 A mechanism f is ex post group incentive compatible on Θ if, for all
coalition C ⊆ N , θ ∈ Θ, θ′C ∈ ×i∈CΘi, and i ∈ C, f(θ)Ri(θ)f(θ′C , θN\C).

We say that a coalition C ⊆ N can ex post profitably deviate under mechanism f at
θ ∈ Θ if there exists θ′C ∈ ×i∈CΘi such that for all agent i ∈ C, f(θ′C , θN\C)Ri(θ)f(θ) and for
some j ∈ C, f(θ′C , θN\C)Pj(θ)f(θ). Note that ex post group incentive compatibility requires
that no coalition of agents can profitably deviate at any type profile.11

Finally, we shall require our mechanisms to satisfy a condition that we call respectfulness.
It is a relatively weak requirement since it only applies to some limited changes in type
profiles, and has no bite in some important cases (for example, in public good economies
where agents’preferences are strict). The condition essentially requires that for those limited
changes in type profiles, no agent can affect the outcome (for her and for others) unless she
changes her level of satisfaction.

Definition 9 A mechanism f is (outcome) respectful on Θ if

f(θ)Ii(θ)f(θ′i, θN\{i}) implies f(θ) = f(θ′i, θN\{i}),

for each i ∈ N , θ ∈ Θ, and θ′i ∈ Θi such that Ri(θ′i, θN\{i}) is a f(θ)-monotonic transform of
Ri(θ).

10This property is called uniform incentive compatibility by Holmstrom and Myerson (1983). See also
Bergemann and Morris (2005).
11Notice that we allow for some agents to participate in the profitable deviation without strictly gaining

from it. Moreover, we also allow for some agents not to change their types. That facilitates the deviation
by groups and therefore makes our concept of ex post group incentive compatibility to be strong.
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For short, we call this condition respectfulness. An additional classical requirement that
a mechanism may or may not satisfy is that of Pareto effi ciency.

Definition 10 A mechanism f is Pareto effi cient on Θ if for all θ ∈ Θ, there is no
alternative x in the range of f such that xRi(θ)f(θ) for all i ∈ N and xPj(θ)f(θ) for some
j ∈ N .12

Notice that ex post group incentive compatibility implies Pareto effi ciency, since otherwise
the grand coalition could profitably deviate.

3 The results

Our first result shows that only constant mechanisms can be ex post incentive compatible and
respectful on knit domains. Before we prove the theorem, let’s comment on its importance
and implications. The conclusion of Theorem 1 is very strong, and it is in the same vein than
the one in Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006) obtain under completely
different premises. In our case, the emphasis is on the relevance of the domain on which the
mechanism has to be defined. The theorem also restricts attention to mechanisms that are
respectful, but notice that this requirement does not always have bite. It is irrelevant when
the preferences of all agents under all type profiles are strict. Also observe that since we
work with functions, our environments are separable, in the sense of Bergemann and Morris
(2005) who also show (see their Proposition 2) that in this case only rules that are ex post
incentive compatible could be interim incentive compatible. Therefore, our theorem also
applies for the latter weaker requirement, whatever the priors of agents might be, and with
no need to be specific about them.

Theorem 1 Let f : Θ → A be a mechanism. If Θ is knit and f is ex post incentive
compatible and respectful on Θ, then f is constant.

Proof. Let Θ be a knit set of type profiles and let f be a ex post incentive compatible and
respectful mechanism on Θ. Assume, by contradiction, that f was not constant. Then, there
will be x, z ∈ A, x 6= z such that x = f(θ) and z = f(θ̃) for some θ and θ̃ in Θ. Since Θ is
knit, for the two pairs formed by an alternative and a type profile, (x, θ) and (z, θ̃) ∈ A×Θ,
there exist θ′ ∈ Θ and two sequences S = {θi(S,1), ..., θi(S,tS)}, S̃ = {θ̃i(S̃,1), ..., θ̃i(S̃,t

S̃
)} such

that the passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to θ′ through
S̃ is z-satisfactory.
Now, we will show the following:
(a) for each h ∈ {1, ..., tS}, f(mh(θ, S)) = x, and
(b) for each h ∈ {1, ..., tS̃}, f(mh(θ̃, S̃)) = z.
Statements in (a) and (b) yield to a contradiction. By definition of the sequences S and S̃,
we know that mtS(θ, S) = mt

S̃(θ̃, S̃) = θ′. However, f(θ′) = f(mtS(θ, S)) = x by (a) while

12Note that our Pareto effi ciency is on the range of the mechanism, but it collapses to Pareto effi ciency
when the range of the mechanim is the set of alternatives.
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f(θ′) = f(mt
S̃(θ̃, S̃)) = z by (b).

We prove (a) in steps, from h = 1 to h = tS. The proof of (b) is identical and omitted.
Step 1. Let h = 1. By Definition 4, R1i(S,1)(θ, S) is an x-monotonic transform ofR0i(S,1)(θ, S) =

Ri(S,1)(θ). (1)

Observe that f(m1(θ, S)) /∈ U
(
R1i(S,1)(θ, S), x

)
. (2)

(otherwise, if f(m1(θ, S)) ∈ U
(
R1i(S,1)(θ, S), x

)
by (1), f(m1(θ, S))Pi(S,1)(θ)x contradicting

ex post incentive compatibility since i(S, 1) would profitable deviate under f at θ via θSi(S,1)).

Moreover, f(m1(θ, S)) /∈ L
(
R1i(S,1)(θ, S), x

)
. (3)

(otherwise, if f(m1(θ, S)) ∈ L
(
R1i(S,1)(θ, S), x

)
, we would get a contraction to ex post in-

centive compatibility since i(S, 1) would profitable deviate under f at θ via θSi(S,1)).

By (2) and (3) we have that f(m1(θ, S)) ∈ E
(
R1i(S,1)(θ, S), x

)
. (4)

Observe that by (1) we obtain that E
(
R1i(S,1)(θ, S), x

)
⊆ E

(
R0i(S,1)(θ, S), x

)
. (5)

Thus, (4) and (5) show that f(m1(θ, S)) ∈ E
(
Ri(S,1)(θ), x

)
. Then, by respectfulness, we get

that f(m1(θ, S)) = f(θ) = x which ends the proof of (a) for h = 1.
Step h ∈ {2, ..., tS}. By repeating the same argument than in Step 1 on the recursive fact
that f(mh−1(θ, S)) = x, we obtain that f(mh(θ, S)) = f(mh−1(θ, S)) = x.

We now prove our second result, showing the equivalence between ex post individual
and group incentive compatibility in partially knit domains. A consequence of the latter is
Pareto effi ciency, a most desirable property of mechanisms. This result has bite for both
private and interdependent values environments.

Theorem 2 Let f be a respectful mechanism that is defined on a partially knit domain.
Then, f is ex post incentive compatible if and only if f is ex post group incentive compatible.

Before we prove the theorem, let us discuss its content and implications, and propose a
corollary.
A consequence of ex post group incentive compatibility is Pareto effi ciency on the mech-

anism’s range. Hence, the implications that having a good performance regarding incentives
may be compatible with effi ciency is an invitation to investigate those cases where this may
be a promising possibility. It is true that the equivalence may hold in rather vacuous ways,
because there are cases where the only ex post incentive compatible rules lack any inter-
est. But there are other cases where there is a real possibility of making these desiderata
compatible in non-trivial ways.
Here are three relevant examples of mechanisms for which the result holds non-trivially

in private values environments. One of them is the family of social choice functions defined
on single-peaked domains when all agents have strict preferences (see Moulin, 1980 and
our Proposition 3). The other case is provided by the top trading cycle mechanism for
house allocation (see Shapley and Scarf, 1970 and our Proposition 4). Finally, consider the
large class of non-trivial strategy-proof rules on the universal domain that one can define
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when only two alternatives are at stake (see Barberà, Berga, and Moreno, 2012, Manjunath
2012, and our Proposition 2). In all three cases we are dealing with partially knit private
values environments, the mechanisms are individual and group strategy-proof, and by no
means trivial.13 Also remark that for the case where the mechanism has more than two
alternatives on the range, only dictatorship is strategy-proof on the universal domain, by
the Gibbard-Satterthwaite theorem (see Gibbard, 1973 and Satterthwaite, 1975). This is an
example in which our Theorem 2 also applies, since the universal domain is partially knit
and dictatorships are group strategy-proof, but we use it here as a warning sign that the
implications of Theorem 2, as already explained may or may not be of interest depending
on the environments.14

We have observed before that partially knit environments include private value cases.
Then, the result has a second reading, because it is then the case that ex post incentive com-
patibility becomes equivalent to strategy-proofness, since each agent i’s preferences depend
on θ only through θi. For the same reason, ex post group incentive compatibility becomes
equivalent to group strategy-proofness. These remarks lead us to the following corollary.

Corollary 1 Let f be a respectful mechanism that is defined on a private values partially
knit domain. Then, f is strategy proof if and only if it is group strategy-proof.

Proof of Theorem 2. Let Θ be a partially knit set of types and let f be a respectful
mechanism. By definition, ex post group incentive compatibility implies ex post incentive
compatibility. To prove the converse, suppose, by contradiction, that there exist θ ∈ Θ,
C ⊆ N , #C ≥ 2, θ̃C ∈ ×i∈CΘi such that for any agent i ∈ C, f(θ̃C , θN\C)Ri(θ)f(θ) and
f(θ̃C , θN\C)Pj(θ)f(θ) for some agent j ∈ C. Let z = f(θ̃C , θN\C) and x = f(θ). Note that
(i) z 6= x, (ii) C(θ, z, x) 6= ∅, #C(θ, z, x) ≥ 2 since C ⊆ C(θ, z, x), and (iii) θ̃j = θj for any
j ∈ N\C(θ, z, x) again since C ⊆ C(θ, z, x).
Since Θ is partially knit and conditions in Definition 6 are satisfied, there exist θ′ ∈ Θ
and two sequences of types S = {θi(S,1), ..., θi(S,tS)}, S̃ = {θ̃i(S̃,1), ..., θ̃i(S̃,t

S̃
)} such that the

passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to θ′ through S̃ is
z-satisfactory.
Although these sequences are not necessarily the same than the ones we used in the proof
of Theorem 1, from this point on, we can use the same reasoning as there, and show that
(a) for each h ∈ {1, ..., tS}, f(mh(θ, S)) = x, and
(b) for each h ∈ {1, ..., tS̃}, f(mh(θ̃, S̃)) = z,
again leading to a contradiction. Adding the arguments we have already used in the proof
of Theorem 1 we would complete the one for the present theorem.

13We say that a mechanism f is group strategy-proof if for any coalition C ⊆ N , any θ ∈ Θ, any
θ′C ∈ ΘC , f(θC , θ

′
N\C)Ri(θ)f(θ′) for any agent i ∈ C. When the condition is imposed only on singleton

coalitions C = {i} , we say that f is strategy-proof. In words, strategy-proofnes requires that all agents
prefer truthtelling at a given type profile θ, whatever all the other agents report.
14Let us comment on the connection between our results and the Gibbard-Satterthwaite theorem. There

is no contradiction between our result in Theorem 1 that only constant mechanisms are strategy-proof and
that of the Gibbard-Satterthwaite theorem, since the universal domain where the latter applies is not knit,
as shown in Proposition 1, and thus Theorem 1 does not apply.
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4 Applications

In this section we present examples of simple environments where our theorems apply.
These examples are inspired in our reading of several relevant papers in the literature.

They are framed in the language we have developed in our paper, and they allow us to clarify
several of the points we try to make all along.
Examples 3 and 4 refer to deliberative committees and are inspired by our reading of

Austen-Smith and Feddersen (2006), who build on the classical Condorcet jury problem and
add the possibility that agents share (true or false) information.
Examples 5 and 6 refer to house allocation problems and are this time inspired by the

analysis of Che, Kim, and Kojima (2015), regarding the existence of Pareto effcient and
ex-post incentive compatible mechanisms.
Examples 7 and 8 refer to auctions and are inspired by some of the models in Dasgupta

and Maskin (2000) and Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006).
Until now we have analyzed our environments in abstract terms, and have not discussed

the origin of the preference function, which indicates what is the relevant preference profile
associated to each profile of types. We have already remarked, when discussing Example
2, that Bergemann and Morris (2005) propose it without any specific explanation regarding
where this function comes from. Indeed, this is common to different general discussions of the
issues we address here, and digging on the underlying reasons to predicate a given preference
function in immaterial for the validity of our theorems. Notice, however, that whether or
not a domain is knit, or partially knit, will depend on the preference function that applies
in each case, for environments that are otherwise identical. Hence, it is interesting to know,
for each specific application, whether or not the underlying phenomenon we want to model
is adequately represented by a specific preference function.
In most applications, authors endow agents with a general utility function15 that may

depend on variables that reflect the agent’s type and, in the interdependent values case, on
other variables that correspond to the types of the rest of agents. The type of an agent is
then given by its utility function, and by the values of the arguments that correspond to
its private characteristics. Then, the preference profile that is defined once the profile of
everybody’s characteristics is used to evaluate the utilities of all agents corresponds to what,
in our language, would be the image of our preference function. Our general framework has
departed from this specific formulation, since we stick to a purely ordinal framework and
avoid the use of utility functions. This has allowed us to define domain restrictions that
trascend the details of any specific functional form and avoid questions of representability.
Since in this section we want to get closer to well studied issues, we also become specific
about the form of preference functions, based on the interpretation of different models. That
will allow us to show that the choice of preference functions crucially determines whether a
domain of application is knit, or partially knit, and has implications on the possibilities of
design.
Hence, from now on, we think of types as a combination of two sorts of elements. On the

one hand, agents’types may identify the rules through which they would form their pref-

15The use of utility functions that represent the preferences of expected utility maximizers is especially
useful, a fortiori, to analyze incentive compatibility notions that involve uncertainty regarding the types.
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erences, should they be informed about the whole profile of types. We call them preference
formation rules. The rest of elements in the type can be treated as a second block, and we
call them signals.16

Formally, a type for agent i ∈ N can be written as θi = (bi, si) ∈ Θi, where bi is a function
from type profiles to individual i’s preferences. If we take those elements as the primitives
of the model, we can then induce the relevant preference function for each application as
follows. Let Bi be the set of possible preference formation rules for individual i. Let Si be
the set of signals for agent i. In all applications we consider type profiles in Θi ≡ Bi×Si and
the preference function R : Θ −→ ×i∈NRi is such that for each i ∈ N , Ri(θ) = bi(s) where
s = (s1, ..., sn). In each of the examples that follow we will be precise about the nature of
signals and preference formation rules.17

4.1 Deliberative Juries

Example 3. A three-person jury N = {1, 2, 3} must decide over two alternatives: whether
to acquit (A) or to convict (C) a defendant under a given mechanism. The defendant is
either guilty (g) or innocent (i). Each juror j gets a signal sj = g or sj = i.
Jurors’s preferences arise from combining the different signals they obtain from the delib-

eration, according to their particular preference formation rules. These are of two possible
kinds, depending on the agents’tendency to convict in view of their observed signals and of
those declared by others. In this example, jurors are either high-biased (h) or low-biased (l).
High-biased jurors (h) prefer to convict if and only if all other jurors declare the guilty signal
and she has also observed it (s = (g, g, g)), whereas low-biased ones (l) prefer to convict if
and only if it has observed the guilty signal or at least one other committee member has
declared it (s 6= (i, i, i)).
Let CA denote the preference to convict rather than to acquit and AC be the converse

order. Each agent can have two preference formation rules that are defined as follows: (1)
bh(s) = CA if s = (g, g, g) and bh(s) = AC, otherwise, and (2) bl(s) = AC if s = (i, i, i) and
bl(s) = CA, otherwise. Here Bi = B = {bh, bl} for all agents. The preference function is R
is such that for each agent i ∈ N , Ri((bhi , si), θ−i) = bh(s) and Ri((bli, si), θ−i) = bl(s).
The domain of types in this example is knit. Hence we know by Theorem 1 that it will be

impossible to design non-constant, ex post incentive compatible, and respectful mechanisms
in such framework.
The proof that the domain is knit is in Proposition 5 in Appendix B. Here we simply

provide the reader with some hints on the techniques that we use to check for our domain
conditions in this example and subsequent ones.18

To check knitness for a particular pair of types and alternatives, (A, θ) and (C, θ̃), we
must show that there are passages to a third type profile θ′ which are A-satisfactory from θ

16This is a slight abuse of language, because preference formation rules may not be fixed in some applica-
tions, and would also be identified as additional signals received by the agents. But we hope this generates
no ambiguity.
17An even more general formulation of the preference formation rule would simply require that Ri(θ) =

bi(θ), but we do not need to use it in any of our applications.
18The reader that finds the following argument to be useful to better understand our condition may also

find a similar one for partially knit in the text preceding the proof of Proposition 6 in Appendix B.
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and C-satisfactory from θ̃, respectively. For notational simplicity, we write h and l to denote
bh and bl, respectively.
Consider the following three type profiles, θ = (θ1, θ2, θ3) = ((l, g), (h, g), (l, i)), θ̃ =

(θ̃1, θ̃2, θ̃3) = ((l, g), (h, g), (l, g)) and θ′ = (θ′1, θ
′
2, θ
′
3) = ((l, i), (h, i), (l, i)). The profiles of

preferences they induce are shown in Table 2.

R(θ) = R((l, g), (h, g), (l, i)) R(θ̃) = R((l, g), (h, g), (l, g)) R(θ′) = R((l, i), (h, i), (l, i))
C
A

A
C

C
A

C
A

C
A

C
A

A
C

A
C

A
C

Table 2 : Columns indicate agents’preferences induced by θ, θ̃, and θ′, respectively.

As shown in Table 3, it is possible to sequentially move from θ to θ′ by successively
changing, one by one, the type of the agents. First agent 1 from (l, g) to (h, i), then agent
2 from (h, g) to (h, i) and finally agent 1 from (h, i) to (l, i). According to our notation,
I(S) = (1, 2, 1). Likewise, as shown in Table 4, we can move from θ̃ to θ′ by successively
changing, one by one, the type of some agents. First agent 1, second agent 3, and then
agent 2, all from g to i, while their preference formation rules remaining fixed. That is,
I(S̃) = (1, 3, 2). In Table 3, alternative A either does not change its relative position (an
A-reshuffl ing), or improves it (an A-monotonic transform). Similarly, in Table 4, the same
requirements are satisfied but this time for alternative C.

R(θ) = R((l, g), (h, g), (l, i)) R((h, i), (h, g), (l, i)) R((h, i), (h, i), (l, i)) R(θ′) = R((l, i), (h, i), (l, i))
C
A

A
C

C
A

A
C

A
C

C
A

A
C

A
C

A
C

A
C

A
C

A
C

Table 3 : Induced agents’preferences given the specified type changes from θ to θ′.

R(θ̃) = R((l, g), (h, g), (l, g)) R((l, i), (h, g), (l, g)) R((l, i), (h, g), (l, i)) R(θ′) = R((l, i), (h, i), (l, i))
C
A

C
A

C
A

C
A

A
C

C
A

C
A

A
C

C
A

A
C

A
C

A
C

Table 4 : Induced agents’preferences given the specified type changes from θ̃ to θ′.

Example 4. Consider the framework of Example 3 and change agents’preference formation
rules as follows. Each juror may now be either unswerving or median. Unswerving jurors
(u) prefer to convict if and only if they have observed the guilty sign and have also received
such a sign from at least another juror. Median jurors (m) again prefer to convict under the
same circumstances but also if they receive two guilty signals from other jurors.
For instance, if juror 1 is unswerving she will prefer to convict if either (g, g, g), (g, g, i),

or (g, i, g) but if juror 2 is unswerving she will convict if either (g, g, g), (g, g, i), or (i, g, g)).

16



Yet being median is the same for both agents, they will prefer to convict if either (g, g, g),
(g, g, i), (g, i, g), or (i, g, g).
Each agent can have two preference formation rules that are defined as follows: (1) bui (s) =

CA if si = g and sj = g for some j 6= i and bui (s) = AC, otherwise; (2) bmi (s) = bm(s) such
that bm(s) = CA if # {i ∈ N : sj = g} ≥ 2 and bm(s) = AC, otherwise. Here Bi = {bui , bm}.
The preference function is R is such that for each agent i ∈ N , Ri((bui , si), θ−i) = bui (s) and
Ri((b

m, si), θ−i) = bm(s).
This domain is partially knit (see Proposition 6 in Appendix B) but not knit. To show

that it is not knit, we present a family of mechanisms, that of quota rules, that are non-
constant, respectful, and ex post incentive compatible on Θ.19

Let q ∈ {1, 2, 3}. A mechanism f is voting by quota q if f chooses C for a type profile θ
if and only if at least q agents have induced preferences from θ such that C is preferred to
A.20 Formally, for each type profile θ = (b, s) ∈ Θ,

f(θ) = C if and only if # {i ∈ N : bi(s) = CA} ≥ q.

In Table 5 below we describe all possible results of voting by quota for different values
of q in Example 4. We have four matrices, one for each type of agent 3. In the rows of each
matrix we write the four types of agent 1 and in the columns the four types of agent 2. In
each cell, we write each agent’s best alternative according to their preference at a given type
profile, followed by the outcome of a quota mechanism. When two outcomes appear in a
cell, the one in the left stands for the outcome of voting by quota 3 and the right one is the
outcome for both quota 1 and 2, which in this example are always the same.
Given Table 5, it is easy to check that these rules are ex post incentive compatible. In

addition, they also satisfy anonymity.
Now, Theorem 2 will ensure that these and other mechanisms that we may know to be ex

post incentive compatible for our example will also be ex post group incentive compatible,
since the domain is partially knit.

(bm3 , i) (bm2 , i) (bm2 , g) (bu2 , i) (bu2 , g)

(bm1 , i) AAA A AAA A AAA A AAA A
(bm1 , g) AAA A CCC C AAA A CCC C
(bu1 , i) AAA A AAA A AAA A AAA A
(bu1 , g) AAA A CCC C AAA A CCC C
(bu3 , i) (bm2 , i) (bm2 , g) (bu2 , i) (bu2 , g)

(bm1 , i) AAA A AAA A AAA A AAA A
(bm1 , g) AAA A CCA A/C AAA A CCA A/C
(bu1 , i) AAA A AAA A AAA A AAA A
(bu1 , g) AAA A CCA A/C AAA A CCA A/C

19Note that respectfulness is trivially satisfied in these environments where preferences are strict and
alternatives have no private component.
20See Austen-Smith and Feddersen (2006) and Barberà and Jackson (2004) for papers where these rules

are analized.
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(bm3 , g) (bm2 , i) (bm2 , g) (bu2 , i) (bu2 , g)

(bm1 , i) AAA A CCC C AAA A CCC C
(bm1 , g) CCC C CCC C CAC A/C CCC C
(bu1 , i) AAA A ACC A/C AAA A ACC A/C
(bu1 , g) CCC C CCC C CAC A/C CCC C
(bu3 , g) (bm2 , i) (bm2 , g) (bu2 , i) (bu2 , g)

(bm1 , i) AAA A CCC C AAA A CCC C
(bm1 , g) CCC C CCC C CAC A/C CCC C
(bu1 , i) AAA A ACC A/C AAA A ACC A/C
(bu1 , g) CCC C CCC C CAC A/C CCC C

Table 5. For each type profile, each agent’s best alternative and feasible outcome of a
voting by quota mechanisms.

4.2 Private goods without money

Example 5. Let N = {1, 2} be a set of agents, O = {a, c} be a set of objects. Each
agent must be assigned one and only one object. Thus, the set of alternatives is A = {x =
(a, c), z = (c, a)}, where the first component refers to the object that agent 1 gets. There is
no money in this economy.
The type of each agent i is given by a signal si in [0, 1] and a unique preference formation

rule bi, which is defined by using a function gi : S → R in the following way. For any given
s ∈ S, the image of bi(s) is the preference where x is at least as good as z if and only if
gi(s) ≥ 0.
For each agent i = 1, 2, we assume that the function gi is increasing in both signals.21

The domain in Example 5 is knit (see Proposition 7 in Appendix B). Therefore by Theorem 1
only constant mechanisms can be ex post incentive compatible and respectful in this context.

Example 6. We consider the framework of Example 5, except that we change agents’prefer-
ence formation rules to be induced by the functions g1(s) = min

(
median

{
1
4
, s1, s1, s2

})
− 1

4

and g2(s) = min
(
median

{
1
4
, s2, s2, s1

})
− 1

4
. For any given s ∈ S, the image of bi(s) is the

preference where x is at least as good as z if and only if gi(s) ≥ 0.
The main difference between this example and the preceding one is that now the functions

gi are not strictly increasing, just weakly.
Like in Example 4 above, the domain of types in this example is partially knit (see

Proposition 8 in Appendix B) but not knit. To prove it, consider the following mechanisms.
A mechanism fveto x is a veto rule for x if for any type profile the outcome is agent 1’s

best alternative when it is unique, and it is agent 2’s best alternative otherwise. Formally,
for θ ∈ [0, 1]2,

fveto x(θ) =

{
x = (a, c) if θ ∈ Sca, and

z = (c, a) if θ ∈ Saa ∪ Sac ∪ Scc ∪ S0
}
.

21Che, Kim, and Kojima (2015) also impose the following property which they call the single-crossing
property : ∂ui(θ)

∂si
>

∂uj(θ)
∂si

for any θ ∈ Θ. However, as they already mention, this condition is not required
for the impossibility result to hold.
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In view of Theorem 1 the existence of these non-constant, ex post incentive compatible,
and respectful mechanisms implies that the domain of types is no longer knit (in Appendix
B we show that veto rules satisfy the three properties). Now, Theorem 2 will ensure that
these and other mechanisms that we may know to be ex post incentive compatible for our
example will also be ex post group incentive compatible, and therefore, Pareto effi cient, since
the domain is partially knit.

4.3 Auctions

There is one unit of an indivisible good to be auctioned. Let N be the set of buyers (agents).
An alternative in this model tells us which single agent, if any, gets the good and what
positive price she pays for it, meaning then that the rest agents do not get the good and pay
zero. If no agent gets the good, no one pays anything. Formally, an alternative x is written
as x = (x1, ...xn) ∈ A = ({0, 1} × R+)n, with xi = (ai, pi) where ai = 1 and pi > 0 if and
only if agent i gets the good, and pl = 0 for all agents l that do not get it.
We assume that agents’preferences are selfish. Agents only care about whether or not

they are awarded the good and, if so, about how much they must pay for it. Threfore, we can
define their preferences on the part of the alternative that concerns them and then naturally
extend such preferences to alternatives.
The type of each agent i is given by a signal, si ∈ Si ⊆ R (where Si has a minimun),

and by a unique preference formation rule bi. This rule is defined by means of an auxiliary
function gi : S → R. For any given s ∈ S, bi(s) is the preference where
(1) (1, pi)Pi(s)(1, qi) for all qi > pi (agent i strictly prefers paying less than more), and
(2) (1, gi(s))Ii(s)(0, 0) (agent i is indifferent between not getting the good and paying

nothing or receiving the good and paying gi(s)).
Notice that gi(s) is buyer i’s valuation of the good, gi has a minimum in S, and that

the preference relation of i is fully determined once we know which alternative (1, gi(s)) is
indifferent to (0, 0).
We assume all along this section that for each agent i, gi satisfies the following standard

condition in the literature: (a) gi is non-decreasing in si.

Example 7. Let us assume that, in addition to condition (a), for any agent i, the
evaluation will be the lowest possible if all other agents but i receive the lowest signal.
This is formally expressed by condition: (b) gi(s) = gi(s) for s such that sj = sj for all
j ∈ N\{i}.22

Under conditions (a) and (b), the domain in this example is knit23 (see Proposition 9 in

22An example of a gi function satisfying these properties is presented by Jehiel, Meyer-Ter-Vehn,
Moldovanu, and Zame (2006). In our notation, consider the case where gi(s) = βi + α

∏
j∈N

sj , βi ∈ [0, 1],

α > 0 and the signal space is Si = [0, 1]. Note that by fixing βi and α, we have a unique preference formation
rule for each agent.
23Our examples are chosen to illustrate our points, and the readers may want to create additional ones or

to use them for comparison with alternative results. Take, for instance, the function gi(s) = max{s1, ..., sn},
that is used in Ivanov, Levin, and Niederle (2010), for other purposes. Such auxiliary function gi satisfies
condition (a) but not (b), and it could be used to define a knit (hence, also partially knit) domain. Since
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Appendix B). Hence, again by Theorem 1 we know that it will be impossible to design non-
constant, ex post incentive compatible and respectful mechanisms in such framework. This
negative result parallels those in Examples 3 and 5 above, where Theorem 1 also applies.
One could wonder whether it would be possible to find non-constant mechanims by

dropping the requirement of respectfulness. We do not have a full answer to this question,
but the answer is negative if we substitute condition (a) by the stronger condition (c) gi is
strictly increasing in sj for all j ∈ N , and the requirement that the good is always allocated.
(See Proposition 10 in Appendix B.)
Now, Example 8 and our subsequent remarks will explore the positive consequences of

apparently small changes in the preference formation rules.

Example 8. For simplicity, let N = {1, 2}, Si = {0, 1} for all i ∈ N and l,m, h ∈ R+ with
0 = l < m < h. The agent’s preference formation rule is defined as in the general framework
but will now be based on a different auxiliary function that takes three possible values, low,
medium and high.
More formally,

gi(s) =


l if si = 0
m if si = 1 and sj = 1,
h if si = 1 and sj = 0.

Observe that for each agent i, gi satisfies (a) and the following condition:
(d) gi is non-increasing in sj, for all j ∈ N\{i}.
Condition (d), in contrast to the cases encompassed in Proposition 10 and to some cases

in Example 7, establishes that the valuation of the good by agent i depends negatively on
other agents’signals. Note also that Example 8 does not satisfy condition (c).
Now, we assert that the domain of types in this example is not knit, but is partially knit

(see Proposition 11 in Appendix B). Therefore, we can apply Theorem 2 and conclude that
any ex post incentive compatible and respectful mechanism on that domain will also be ex
post group incentive compatible, and therefore, Pareto effi cient.
In view of Theorem 1, to prove that is not knit, it is enough to show that the domain

admits a non-constant, ex post incentive compatible, and respectful mechanism. Here is
such a mechanism.24 Let l < p < m and l < p′ < m. Let fp,p′ be such that no agent gets the
good if both signals are 0, agent 1 gets the good and pays p if her signal is 1, and agent 2
gets the good and pays p′, otherwise. Formally, for θ ∈ {0, 1}2,

fp,p′(θ) =


((0, 0), (0, 0)) if s1 = s2 = 0,
((1, p), (0, 0)) if s1 = 1, and

((0, 0), (1, p′)) if s1 = 0, s2 = 1.


Let us complete the discussion of this and related examples with some additional com-

ments. Example 8 provides a scenario where to apply Theorem 2, which is based on the

our purpose is only to provide some examples, we leave the possibility of constructing new ones based on
this gi to the interested readers.
24In Lemma 3 in Appendix B we show that fp,p′ is ex post incentive compatible and respectful defined on

Θ and gi’s as in Example 8.
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assumption that changes in some agent’s signal induce reverse effects in the preferences of
the different participants in the auction. While we can think of environments and signals
where this can be the case, the assumption that prevails in the literature on auctions is
that all agents respond in the same direction to changes in some agent’s signal. Led by this
observation, we offer the reader the following additional remark (that is formally justified in
Appendix B).

Remark 2 If we just modify Example 8 and assume that all agents’preferences respond in
the same way positively to changes in signals, we can prove the existence in such environment
of a mechanism that is respectful, and individually but not ex post group incentive compatible.
Hence, this new specification lead to domains that are not partially knit.

5 Discussion

In this paper we have emphasized the crucial role of domains of definition in determining
whether or not satisfactory ex post incentive compatible mechanisms can be designed.
Our classification of domains is not based on specific assumptions about preferences, or

the structure of the space of alternatives, or other considerations that end up determin-
ing what combinations of types are admissible in specific applications. Rather, we have
extracted from different possible special cases what we think are crucial aspects that distin-
guish some domains from others. These characteristics refer to how different type profiles
are interconnected within a given domain.
Since we model the preferences of agents as binary relations, and conduct our analysis in

ordinal terms, we have introduced the notion of a preference formation rule, which is useful
for our applications but not essential for the general results.
Our conditions do not refer specifically to the structure of the set of types, or to its

dimensionality. Since the distinction between one-dimensional and multidimensional signals
is often seen as being determinant for the possibility or impossibility of designing effi cient
mechanisms with good incentive properties, our results suggest that this criterion, however
important, needs not always be determinant.
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6 Appendix A

In this appendix we prove propositions stated in Section 2.

Proof of Proposition 1. Let i ∈ N , θi, θ̃i ∈ Θi, θi 6= θ̃i be such that R(θi) 6= R(θ̃i). There
will be a pair of alternatives, say x and z, such that xPi(θi)z and zRi(θ̃i)x (otherwise, for
θi, θ̃i ∈ Θi, R(θi) = R(θ̃i)). To show that the set of types Θ is not knit, we prove that for
the two pairs (x, (θi, θ−i)), and (z, (θ̃i, θ−i)) for some θ−i, there does not exist any θ′, S, and
S̃ such that the passage from θ to θ′ through S be x-satisfactory and the passage from θ̃ to
θ′ through S̃ be z-satisfactory. We prove it by contradiction. Suppose otherwise that there

exist θ∗, S∗, S̃∗, such that the passages
{
mh(θ, S∗)

}tS∗
h=0

and
{
mh(θ, S̃∗)

}t
S̃∗

h=0
from θ to θ∗

through S∗ and θ̃ to θ∗ through S̃∗ are x and z-satisfactory, respectively.
Since we are in a private values environment, changes in the type of agent j never affect the
induced preferences of other agents, in particular never affect i’s induced preferences if j 6= i.
Moreover, we know that xPi(θi)z and zRi(θ̃i)x. These two observations imply that agent i
must belong to I(S∗) ∪ I(S̃∗). That is, i will appear in at least one of these two sequences.
We concentrate on the steps of the passage where agent i changes her type and we show
that there is no θ∗ compatible with x-satisfactory and z-satisfactory passages from θ to θ∗

and from θ̃ to θ∗.
Without loss of generality, by the remark just after Definition 4, we can assume that all
types of agent i in S∗ and S̃∗ appear in the first positions in these sequences. Let’s define
IS∗,i ≡ {h ∈ {1, 2, ..., iS∗} : I(S∗, h) = i} and IS̃∗,i =

{
h ∈

{
1, 2, ..., iS̃∗

}
: I(S̃∗, h) = i

}
.

Take 1 ∈ IS∗,i. Since R1i (θ, S
∗) is an x-monotonic transform of Ri(θi), we have that

xPi(m
1
i (θ, S

∗))z. By repeating the same argument for each h ∈ IS∗,i we finally obtain that
xPi(m

iS∗
i (θ, S∗))z where miS∗

i (θ, S∗) = θ∗i .
Now, take 1 ∈ IS̃∗,i. Since R

1
i (θ̃
∗, S̃∗) is a z-monotonic transform of Ri(θ̃∗i ), we have that

zRi(m
1
i (θ̃
∗, S̃∗))x. By repeating the same argument for each h ∈ IS̃∗,i we finally obtain that

zRi(m
i
S̃∗
i (θ, S̃∗))z where m

i
S̃∗
i (θ, S̃∗) = θ∗i .

As mentioned above, changes in types of agents different from i will not change agent i’s pref-
erences. Thus, we have obtained the desired contradiction. On the one hand that xPi(θ∗)z
and on the other hand, that zRi(θ∗)x.

Proof of Proposition 2. Two relevant observations: types are preferences, that is,
θi = Ri ∈ Ri = Θi for each i ∈ N . Moreover, changes in j’s preferences do not affect
i’s preferences if i 6= j.
Let U denote the universal set of strict preferences in the classical social choice problem.
Thus, Ri = U . To check partial knitness, take any (x,R), (z, R̃) ∈ A × Un such that
C(R, z, x) = C(R, z, x) 6= ∅, #C(R, z, x) ≥ 2, and R̃j = Rj for all j ∈ N\C(R, z, x). With-
out loss of generality, let C(R, z, x) = {1, 2, ..., c} where c denotes its cardinality. Construct
S, S̃ and R′ satisfying the condition in partially knitness.
Before, for each Ri ∈ U , let Rzi be the preference obtained by lifting z to the first position
and keep the relative position of all other alternatives.
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Now, start from R and define S = {Rz1, Rz2, ..., Rzc} where tS = c. Note that for each
h ∈ {1, ..., c}, Rhi (R, S) = Rzi is an x-reshuffl ing of i’s previous preferences Ri. Then,
R′ = Rc(R, S) = Rz.

Now, start from R̃ and define S̃ =
{
R̃z1, R̃

z
2, ..., R̃

z
c , R

z
1, R

z
2, ..., R

z
c

}
where tS̃ = 2c. Note that

for each h ∈ {1, ..., c}, Rhi (R̃, S̃) = R̃zi is a z-monotonic transform or a z-reshuffl ing (if z was
already the top) of i’s previous preferences R̃i, and for h ∈ {c+ 1, ..., 2c}, Rhi (R̃, S̃) = Rzi is
a z-reshuffl ing of i’s previous preferences R̃zi Then, R

′ = R2c(R̃, S̃) = Rz.
This ends the proof.

Proof of Proposition 3. The same two observations as in the proof of Proposition 2 apply:
types are preferences, that is, θi = Ri ∈ Ri = Θi for each i ∈ N . Moreover, changes in j’s
preferences do not affect i’s preferences if i 6= j.
Let A be a finite and ordered set of alternatives in R, the real line. For all i ∈ N , let Ri = S
be the set of strict single-peaked preferences on A according to the established real numbers
order. Thus, R = Sn. We introduce some notation: Given Rj ∈ S, p(Rj) denotes the peak,
that is, the best alternative, of Rj in A. Given Rj ∈ S and x ∈ A, define r(Rj, x) as the first
alternative in L(Rj, x) in the opposite side of alternative x with respect to p(Rj).
Another useful observation that we use in this proof is that Definition 1 of x-monotonic
transform is equivalent to the following one when agents’preferences are strict: "R′i ∈ R̃ is
an x-monotonic transform of Ri ∈ R̃ if for any y ∈ A\{x}, [xPiy ⇒ xP ′iy]". Equivalently,
L(Rj, x) ⊆ L(R̃j, x), being a x-reshuffl ing when the equality holds.
To check partial knitness, take any (x,R), (z, R̃) ∈ A×R such that C(R, z, x) = C(R, z, x) 6=
∅, #C(R, z, x) ≥ 2, and R̃j = Rj for all j ∈ N\C(R, z, x). Without loss of generality, let
x < z, which implies that p(Rj) > x. Also without loss of generality, let C(R, z, x) =

{1, 2, ..., c} where c denotes its cardinality. Now define S = S̃ = C(R, z, x) = {1, 2, ..., c} and
construct for each agent j ∈ {1, 2, ..., c}, R′j depending on the cases below.
Take any j ∈ C(R, z, x) and consider the following cases.
Case 1. R̃j is such that xP̃jz. Take R′j ∈ S such that p(R′j) ∈ [x, z), r(Rj, x) = z, and
zP ′jy for all y < x. Notice that such R′j exists, and the two following set inclusions hold:

L(Rj, x) ⊆ L(R′j, x), L(R̃j, z) ⊆ L(R′j, z). Thus, R
′
j is both an x-monotonic transform of Rj

and a z-monotonic transform of R̃j.
Case 2. R̃j is such that zP̃jx. Consider several subcases.
Case 2.1. L(Rj, x) ⊆ L(R̃j, x). Let R′j = R̃j and observe that R′j is an x-monotonic trans-

form of Rj (obviously, R′j is a z-monotonic transform of R̃j since R′j = R̃j).

Case 2.2. L(R̃j, x) $ L(Rj, x). We distinguish additional subcases which require different
definitions of R′j.

Case 2.2.1 . L(R̃j, x) $ L(Rj, x) and L(R̃j, z) ⊆ L(Rj, z). Let R′j = Rj and observe that R′j
is an x-monotonic transform of Rj (obviously since R′j = Rj) and R′j is also a z-monotonic

transform of R̃j.
Case 2.2.2 . L(R̃j, x) $ L(Rj, x) and L(Rj, z) $ L(R̃j, z). Note that this implies that either
(a) p(Rj), p(R̃j) ∈ (x, z) or else (b) p(Rj), p(R̃j) > z.
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If (a) holds, then let R′j be such that p(R
′
j) ∈

[
min{p(Rj), p(R̃j)},max{p(Rj), p(R̃j)}

]
,

r(R′j, x) = r(Rj, x) and r(R′j, z) ≥ r(R̃j, z). Note that by definition of single-peakedness,
such preference R′j exists.

If (b) holds, then let R′j be such that p(R
′
j) ∈

[
z,min{p(Rj), p(R̃j)}

]
, r(R′j, x) ≤ r(Rj, x)

and r(R′j, z) ≤ r(R̃j, z). Note that by definition of single-peakedness, such preference R′j
exists.
Then, observe that R′j defined in (a) and (b) is both an x-monotonic transform of Rj and a

z-monotonic transform of R̃j since L(Rj, x) ⊆ L(R′j, x) and L(R̃j, z) ⊆ L(R′j, z) hold.

Case 2.2.3 : L(R̃j, x) $ L(Rj, x) and z ∈
(

min{p(Rj), p(R̃j)},max{p(Rj), p(R̃j)}
)
. Assume

that p(Rj) < z < p(R̃j), otherwise, a similar argument would work.

Note that this implies that either (a) r(Rj, x) ∈
(
z, p(R̃j)

]
or (b) r(Rj, x) ∈

(
p(R̃j), r(R̃j, x)

)
holds.
If (a) holds, then let R′j be such that p(R

′
j) ∈ [z, r(Rj, x)), r(R′j, x) ≤ r(Rj, x) and r(R′j, z) ≤

r(R̃j, z). Note that by definition of single-peakedness, such preference R′j exists.

If (b) holds, then letR′j be such that p(R
′
j) ∈

[
z,min{r(Rj, x), r(R̃j, z)}

)
, r(R′j, x) ≤ r(Rj, x)

and r(R′j, z) ≤ r(R̃j, z).
Then, observe that R′j in (a) and (b) is both an x-monotonic transform of Rj and a z-

monotonic transform of R̃j since L(Rj, x) ⊆ L(R′j, x) and L(R̃j, z) ⊆ L(R′j, z) hold.
Repeating the same argument for each j ∈ C(R, z, x) would end the proof.

Proof of Proposition 4. The proof follows the same argument as the one in Proposition
2 given that there is a universal set of strict preferences over individual assignments and
preferences are selfish as in Barberà, Berga, and Moreno (2016). Just note that although
preferences over individual assignments are strict, preferences over alternatives allow for in-
differences, by selfishness: all alternatives with the same individual assignment are indifferent
for such individual agent. Thus, in the case of matching C(R, z, x) ⊇ C(R, z, x) holds and
Rzi is the preference obtained by lifting z and also all alternatives with the same individual
assignment zi to the first position and keep the relative position of all other alternatives.

7 Appendix B

In this appendix we present some aspects of the applications in Section 4 with more detail
to prove knitness or partially knitness of the domains of types defined in Examples 3 to 8.
We also state and prove some intermediate results required for the auctions application.

Deliverative juries

Example 3 (continued)

Proposition 5 In Example 3, Θ is knit.
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Proof. To prove knitness we just need to combine the following two results.
(1) Consider a pair formed by (A, θ) for any θ ∈ Θ where θj = (bj, sj) for each j ∈ N .
Let θ′ ∈ Θ be such that θ′1 = (l, i) and θ′j = (h, i) for any j ∈ N\{1}. We now define the
sequence S to sequentially go from type profile θ to type profile θ′ by successively changing
the type of the agents in S satisfying A-satisfactoriness. First change, one by one and in any
order, agents’signals from to sj 6= i to i. By definition of bl and bh, in each of the above
changes, the induced preferences of the agent changing her type are either an A-reshuffl ing
or an A-monotonic transform of her previous preferences.
Observe that by definition of the preference formation rules bl and bh, the following condition
is satisfied: if ŝj = i for all j ∈ N , all jurors prefer A to C for any b̂j ∈ B.
We now change, one by one and in any order, each agent’s preference formation rule from
bj 6= h to h for any j ∈ N\{1} and from b1 6= l to l in the case of agent 1. By the observation
made just above, in each of these changes, the induced preferences of each agent is the same
and therefore they are an A-reshuffl ing of their previous preferences. Then, we have defined
S such that θ leads to θ′ through S and the passage from θ to θ′ is A-satisfactory.
(2) Consider a pair (C, θ) for any θ ∈ Θ where θj = (bj, sj) for each j ∈ N . We now define
the sequence S to sequentially go from type profile θ to type profile θ′ above by successively
changing the type of the agents in S satisfying C-satisfactoriness. First change, one by one
and in any order, agents from to sj 6= g to g. By definition of bl and bh, in each of the above
changes, the induced preferences of the agent changing her type are either a C-reshuffl ing or
a C-monotonic transform of her previous preferences.
Observe that by definition of the preference formation rules bl and bh, the following property
is satisfied: if ŝj = g for all j ∈ N , all jurors prefer C to A for any b̂j ∈ B.
We now change one by one, and in any order, each agent’s preference formation rule from
bj 6= h to h for any j ∈ N\{1} and from b1 6= l to l in the case of agent 1. By the observation
made just above, in each of these changes, the preferences of the agents do not change and
therefore they are a C-reshuffl ing of their previous preferences. We now change first agent 1
from g to i. This implies that the preferences of agent 1 does not change but the preferences
of the rest of the agents change from C preferred to A, to A preferred to C given that bj = h
for any j ∈ N\{1}. Then, we change the type of the rest of the agents one by one from g
to i. In each one of these changes the preferences of the agent changing her preferences are
the same: A preferred to C. Therefore, we have constructed a passage from θ to θ′ that is
C-satisfactory.

Example 4 (continued)
Before engaging in the proof that the domain of types in Example 4 is partially knit (see

Proposition 6), we show it through a particular example.
For notational simplicity, from now to the end of the example and when no confusion

arises, we write u and m to denote bu and bm, respectively.
Consider a particular pair of types and alternatives, (A, θ) and (C, θ̃) where θ = ((u, g), (u, i), (m, g))

and θ̃ = ((m, i), (u, i), (u, g)). Let θ′ = ((m, i), (u, i), (m, g)). The profiles of preferences they
induce are shown in Table 6.
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R(θ) = R((u, g), (u, i), (m, g)) R(θ̃) = R((m, i), (u, i), (u, g)) R(θ′) = R((m, i), (u, i), (m, g))
C
A

A
C

C
A

A
C

A
C

A
C

A
C

A
C

A
C

Table 6 : Columns indicate agents’preferences induced by θ, θ̃, and θ′, respectively.

We can check that C(θ, C,A) = C(θ, C,A) = {1, 3} and θ̃2 = θ2 (that is, requirements in
Definition 6 are satisfied). As shown in Table 7 below, it is possible to sequentially move from
θ to θ′ by successively changing, one by one, the type of the agents. In this case, agent 1 from
(u, g) to (m, i). According to our notation, I(S) = (1). Likewise, as shown in Table 8 below,
we can move from θ̃ to θ′ by successively changing, one by one, the type of some agents. In
this case, agent 3 from (u, g) to (m, g), that is, I(S̃) = (3). In Table 7, note that the change
in the preference of agent 1 is a A-monotonic transform of the previous preferences that also
involves a change in the preference of agent 3. Similarly, in Table 8, notice that the change
in the preference of agent 3 is a C-reshuffl ing of her previous preferences.

R(θ) = R((u, g), (u, i), (m, g)) R(θ′) = R((m, i), (u, i), (m, g))
C
A

A
C

C
A

A
C

A
C

A
C

Table 7 : Induced agents’preferences given the specified type changes from θ to θ′.

R(θ̃) = R((m, i), (u, i), (u, g)) R(θ′) = R((m, i), (u, i), (m, g))
A
C

A
C

A
C

A
C

A
C

A
C

Table 8 : Induced agents’preferences given the specified type changes from θ̃ to θ′.

In Tables 7 and 8, we have illustrated the idea of partially knitness for two given type
profiles. We now show that any relevant pair of type profiles are connected through two
appropriate sequences.

Proposition 6 In Example 4, Θ is partially knit.

Proof. Take two pairs (A, θ), (C, θ̃) ∈ A × Θ such that C(θ, C,A) = C(θ, C,A) 6= ∅,
#C(θ, C,A) ≥ 2, and for j ∈ N\C(θ, C,A), θ̃j = θj. By definition, for all j ∈ N , θj = (bj, sj)

and θ̃j = (̃bj, s̃j). We have to show that there exist θ′ ∈ Θ and sequences of types S and S̃
such that θ leads to θ′ through S, θ̃ leads to θ′ through S̃, and the passages from θ and θ̃ to
θ′ are, respectively, A and C-satisfactory.
Let θ′ ∈ Θ be such that θ′j = (bj, g) for any j ∈ C(θ, C,A) and θ′j = θj for any j ∈
N\C(θ, C,A). Define the sequence S = {(bk, g)}, where k ∈ C(θ, C,A) and sk = i. Note
that #I(S) ≤ 1.
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By definition of the preference formation rules in the example, if some agent j prefers C to
A, the signal profile must be such that at most one agent k has signal i: sk = i. Thus, S
is well-defined. Moreover, bk = bm since for unswerving jurors to have C over A their signal
must be g. And by definition of bm increasing the support for g implies that preferences
remain C over A for agents k and will be C over A for the other agents.
Therefore, we have defined S to go from θ to θ′ through S and the passage is A-satisfactory.
We now sequentially go from θ̃ to θ′ by successively changing the type of the agents in
C(θ, C,A), one by one in any order, from to s̃j 6= g to g. This set of agents will be S̃.
By definition of agents’preference formation rules, if one agent changes her signal increasing
the support for guilty, then each agents’induced preferences remain either the same as before
or change in favor of C. Thus, in each one of the above changes, the induced preference
of the agent changing her type is either a C-reshuffl ing or a C-monotonic transform of her
previous ones.
Now, take any two pairs (C, θ), (A, θ̃) ∈ A × Θ such that C(θ, A, C) = C(θ, A,C) 6= ∅,
#C(θ, A, C) ≥ 2, and for j ∈ N\C(θ, A, C), θ̃j = θj, a similar argument would work but
defining θ′ ∈ Θ to be such that θ′j = (bj, i) for any j ∈ C(θ, A, C) and θ′j = θj for any
j ∈ N\C(θ, A, C). Define the sequence S = {(bk, i)}, where k ∈ C(θ, A, C) and sk = g.
Note that #I(S) ≤ 1.
By definition of the preference formation rules in the example, if some agent j prefers A to
C, the signal profile must be such that only one single agent has signal g or at most two
agents k, k′ has signal g. In the latter, these two agents are not j, and k, k′ have preferences
C over A. Thus, S is well-defined. Moreover, by definition of bm and bu increasing if the
single agent with signal g says i, that preferences of this agent and those of all other agents
will be A over C.
Therefore, we have defined S to go from θ to θ′ through S and the passage is A-satisfactory.
We now sequentially go from θ̃ to θ′ by successively changing the type of the agents in
C(θ, A, C), one by one in any order, from to s̃j 6= i to i. This set of agents will be S̃.
By definition of agents’preference formation rules, if one agent changes her signal by in-
creasing the support for innocent, then each agents’induced preferences remain either the
same as before or change in favor of A. Thus, in each one of the above changes, the in-
duced preference of the agent changing her type is either a A-reshuffl ing or a A-monotonic
transform of her previous ones.

Private goods without money

Example 5 (continued)
We shall prove that the set of type profiles in this example is knit. Before that, observe

first that since each agent has a unique preference formation rule that coincides with the
preference function, from now till the end of this application, we identify type profiles with
profiles of signals and use both words interchangeably. Second, we introduce a partition of
the signal space and a useful graphical representation of it which is similar to the one defined
in Che, Kim, and Kojima (2015).
Let {Sac, Sca, Saa, Scc, S0} be the partition of S where:

S0 is the set of signal profiles for which both agents are indifferent between a and c,
Sac is the set of signal profiles for which agent 1 prefers a to c, agent 2 prefers c to a, and
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the preference is strict for at least one agent,
Sca is equally defined after changing the roles of c and a,
Saa is the set of signal profiles for which both agents prefer a to c, and
Scc is equally defined after changing the roles of c and a.
In terms of alternatives, when the signals are in Sac both agents prefer x to z, when they

are in Sca both prefer z to x, in Saa, 1 prefers x over z and 2 prefers z over x, in Scc, 1 prefers
z over x and 2 prefers x over z, and in S0 both are indifferent between x and z.
In Example 5, we assume that the sets Sac and Sca are non-empty.
Figure 1 provides a generic representation of these sets whose frontiers correspond to the

pairs of signals leading to agents’indifference curves over alternatives: {s ∈ [0, 1]2 : xIi(θ)y}.
Since we have assumed that gi is increasing in both signals, agents’indifference curves are
strictly decreasing and since Sac and Sca are non-empty the two curves will have an interior
intersection.25

We can now state and prove Proposition 7.

Proposition 7 In Example 5, Θ is knit.

Proof. Given any two pairs (x, θ), (z, θ̃) ∈ A×Θ we will show that there exist θ′, S, S̃ such
that θ leads to θ′ through S, θ̃ leads to θ′ through S̃ and the passages are x and z-satisfactory.
We choose θ′ = (1, 1) independently of the two chosen pairs (x, θ), (z, θ̃) ∈ A×Θ. In defining
the sequence S from θ to θ′ with x as reference alternative, we distinguish two cases where
we will end up analyzing all possible θ ∈ Θ, in particular θ̃.
Case 1. θ ∈ Sca ∪ Saa ∪ S0. First change the type of agent 1 from θ1 6= 1 to 1. Since
the function g1 is increasing in type 1, the preferences of agent 1 induced by this change

25Although in all pictures corresponding to this example the indifference curves only intersect once, our
formal arguments apply to the multiple intersection case.
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are either an x-reshuffl ing (if θ ∈ Saa) or an x-monotonic transform (θ ∈ Sca ∪ S0) of her
original ones. Then change the type of agent 2 from θ2 to 1. Again, since the function g2 is
increasing in type 2, the preferences of agent 2 induced by this change are an x-reshuffl ing
of her original ones (see Picture 2.a in Figure 2).
Case 2. θ ∈ Sac ∪Scc. In this case we may not be able to change types of agents from θi 6= 1
to (1, 1) as directly as above.
If θ is a type profile from which we could reach another one in Saa by letting the type of
the first agent to be 1, we use the same argument as in Case 1: first change the type of
agent 1 from θ1 6= 1 to 1. The preference of agent 1 induced by this change are either an
x-reshuffl ing (if θ ∈ Sac) or an x-monotonic transform (if θ ∈ Scc) of her original ones. Then
change the type of agent 2 from θ2 to 1. The preferences of agent 2 induced by this change
are an x-reshuffl ing of her original ones.
If not, before reaching this situation, the sequence S must start by previous changes of
signals, at most one for each agent, as shown in Picture 2.b in Figure 2, that keep us within
the element of the partition where θ belongs to. The induced preferences resulting from
these previous type changes remain unchanged.

To define the sequence S̃ from θ̃ to θ′ with z as reference alternative, we would follow a
parallel construction to Cases 1 and 2 above. The relevant cases would now be Case 3:
θ̃ ∈ Sac ∪ Saa ∪ S0 and Case 4: θ̃ ∈ Sca ∪ Scc where we would consider all possible type
profiles θ̃ ∈ Θ including θ. The proof for the existence of the sequence S̃ would require a
similar argument to those of Cases 1 and 2, respectively, but changing first agent 2’s signal
to 1 when required to get to Saa. See the graphical representation in Figure 3.
The construction of these passages shows that our domain is knit as we wanted to show.
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Example 6 (continued)
Before engaging in the proof that the domain of types in Example 6 is partially knit,

observe that the changes in g′is functions imply that the sets Sca = {s ∈ S : zP1x and zP2x}
and Sac = {s ∈ S : xP1z and xP2z} are empty, and that S0 is not a singleton. Due to the
specific form of gi the indifference set is L-shaped and thick, as shown in Figure 4.

Proposition 8 In Example 6, Θ is partially knit.

Proof. As we previously mentioned, two type profiles with the same signal profile are
identical. Thus, we identify s with θ. Take any two pairs (x, θ), (z, θ̃) ∈ A × Θ such that
C(θ, z, x) 6= ∅ and #C(θ, z, x) ≥ 2. These two conditions on θ imply that we must only
consider θ ∈ Sca, i.e. where agent 1 strictly prefers z to x and agent 2 is indifferent between
x and z. Define θ′ = θ̃.
We have to define S such that θ leads to θ′ = θ̃ through S and the passage is x-satisfactory.
We distinguish two cases. See the graphical representation of both cases in Figure 5.
Case 1. θ̃ ∈ Saa ∪ Sca. Define S = {θ̃1, θ̃2} and I(S) = {1, 2}. Note that if θ̃, θ ∈ Sca the
proof is obvious since we move along the same set Sca and no agent preferences change.
Suppose that θ̃ ∈ Saa. We first increase the signal of agent 1 to θ′1 = θ̃1. The induced
preferences of agent 1 are an x-monotonic transform of her previous ones. Agent 2 turns
to strictly prefer z to x, that is, zR2(θ′1, θ2)x. Decrease or incresase now agent 2’s signal to
θ′2 = θ̃2. Note that agent 2’s induced preferences are identical to her previous ones, thus,
are obviously an x-reshuffl ing of the previous ones. So we have gone from θ to θ′ through
adequate types changes with respect to x.
Case 2. θ̃ ∈ Scc ∪ Sac. Define S = {θ̃2, θ̃1} and I(S) = {2, 1}. We first decrease the signal
of agent 2 to θ′2 = θ̃2. The induced preferences of agent 2 are an x-monotonic transform of
her previous ones R2(θ) (since zP2(θ)x while xP2(θ1, θ′2)z). Agent 1 turns to have the same
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preferences as before, that is, zR1(θ1, θ′2)x. Now, we decrease or increase agent 1’s signal to
θ′1 = θ̃1. Note that agent 2’s induced preferences are either identical to her previous ones
(thus, obviously an x-reshuffl ing of those) or they an x-monotonic transform of R1(θ1, θ′2)
(since zP1(θ1, θ′2)x while zI1(θ

′
1)x). So, we have gone from θ to θ′ through adequate types

changes with respect to x.
This ends the proof.
It would remain to consider any two pairs where (z, θ), (x, θ̃) ∈ A × Θ such that such that
C(θ, x, z) 6= ∅ and #C(θ, x, z) ≥ 2, however, a symmetric and similar argument would work.

Finally, we show that the mechanism fveto x defined in Section 4.3 is non-constant, satisfies
ex post incentive compatibility and respectfulness on Θ which shows, by Theorem 1, that
the types domain in Example 6 is not knit.

Observe that, by definition, fveto x is non-constant and no agent can gain by changing her
individual types since they either obtain the same or an indifferent outcome while deviating,
or they obtain their best outcome when truthtelling. Ex post group incentive compatibility
is straightforward since changing both types it is impossible to weakly improve both agents
and strictly one: Note that either agent 1 or 2 strictly lose (we need to check 6 cases:
θ ∈ Saa and θ′ ∈ Sca or viceversa; θ ∈ Sac and θ′ ∈ Sca or viceversa; and θ ∈ Scc and
θ′ ∈ Sac or viceversa). To show that fveto x is respecful, note that the only way for agent 1
to remain indifferent according to her initial preferences R1(θ) and get a different outcome
when changing her type is when θ ∈ Sac and θ′1 <

1
4
such that (θ′1, θ2) ∈ Scc. However,

R1(θ
′
1, θ2) is not an x = fveto x(θ)-monotonic transform of R1(θ). Similarly, for agent 2, to

remain indifferent and get a different outcome when changing her type θ ∈ S0 and θ2 ≥ 1
4
,

θ′2 <
1
4
. However, R2(θ1, θ′2) is not a z = fveto x(θ)-monotonic transform of R2(θ).
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Auctions

Example 7 (continued)
Since each agent’s preference formation rule is fixed, two type profiles with the same

signal profile are identical. Hence we shall use along this section θ and s, indistinctly. The
following Lemma is used in the proofs of Propositions 9 and 11 below.

Lemma 1 Let gk be non-decreasing in sk. For all s ∈ Θ, Rk(s′k, s−k) is a y-monotonic
transform of Rk(s) for all s′k < sk, k ∈ N and y ∈ A such that yk = (0, 0).

Proof. Take s ∈ Θ, k ∈ N and y ∈ A such that yk = (0, 0) and s′k < sk. Since gk is non-
decreasing in sk, gk(s′k, sN\{k}) ≤ gk(s) which means that agent k values the good in signal
profile (s′k, sN\{k}) at most as under profile s. Thus, (0, 0) weakly improves its position in
Rk(s

′
k, sN\{k}) compared to its position in Rk(s). Formally, Rk(s

′
k, sN\{k}) is a y-monotonic

transform of Rk(s).

Proposition 9 If Θ is such that for each i ∈ N , gi is as described in Example 7, then Θ is
knit.

Proof. Take any two pairs (x, θ), (z, θ̃) ∈ A×Θ. We must find θ′, sequences of types S and
S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to
θ′ through S̃ is z-satisfactory.
Consider θ′ =

(
s̃i, sN\{i}

)
. We first propose a sequence of types S =s (tS = n) with I(S)

defined as follows. We initially change, one by one, the signal of agents that do not get the
good in x from sk to sk following the order of natural numbers. If there is one agent i left
who was getting the good in x change her signal from si to si. In each step h ∈ {1, ..., n−1},
by Lemma 1, we obtain that Rh(mh(θ, S)) is an x-monotonic transform of Rh(mh−1(θ, S))
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since for all agents h they do not get the good in x.
As for the last agent in the sequence, her preferences will not change when her signal goes
from si to si due to assumption (b) of function gi.
This completes our argument that the passage from θ to θ′ through S is x-satisfactory.
We could repeat exactly the same argument to show that the passage from θ̃ to θ′ through
S̃ is z-satisfactory after replacing the roles of θ by θ̃ and x by z.
This would end the proof.

Proposition 10 Any ex post group incentive compatible mechanism that always allocate the
good to some agent is constant if all auxiliary functions gi satisfy (b) and (c).

Proof. Consider f any ex post group incentive compatible mechanism that always allocates
the good to some agent and such that all auxiliary functions gi satisfy (b) and (c). We show
that f is constant.
Take x = f(s) and without loss of generality suppose that agent 1 gets the good and pays
p. We show that f is constant by the following steps.

Step 1. For any s = (s1, s2, ...sn), such that sj ∈ Θj for j ∈ N\{1}, then agent 1 gets the
good and pays p.
Take any agent that does not get the good, without loss of generality, say agent 2. Con-
sider s = (s2, sN\{2}) where s2 < s2. By condition (c) of gi (that is, gi is strictly in-
creasing in all sj, j ∈ N), g2(s2, sN\{2}) < g2(s). Ex post incentive compatibility implies
that f2(s2, sN\{2}) = f2(s) = (0, 0). Take now any other agent k ∈ N\{1, 2}. By condi-
tion (c), for each k ∈ N\{1, 2}, gk(s2, sN\{2}) < gk(s). Thus, by ex post group incentive
compatibility, we get that for any k ∈ N\{1, 2} fk(s2, sN\{2}) = fk(s) = (0, 0). This im-
plies that agent 1 gets the good at (s2, sN\{2}). Moreover, agent 1 pays the same price
p. Otherwise, if p′ < p, coalition N would profitably deviate from s to (s2, sN\{2}) since
f1(s2, sN\{2}) = (1, p′)P1(s)f1(s) = (1, p). The other way arround if p′ > p.
Repeating n − 2 additional times the same argument, one for each agent j ∈ N\{1, 2}, we
obtain that for any s = (s1, s2, ...sn), such that sj ∈ Θj for j ∈ N\{1}, agent 1 gets the good
and pays p.

Step 2. For any s = (s1, sN\{1}), such that s1 ∈ Θ1, then agent 1 gets the good and pays p.
By condition (b) of g1, g1(s1, sN\{1}) = g1(s) for any s1 ∈ Θ1. Thus, for any s1 ∈ Θ1, agent
1’s preferences R1(s1, sN\{1}) coincide with R1(s). In particular, R1(s1, sN\{1}) coincide with
R1(s). By ex post incentive compatibility, for all s1 ∈ Θ1, f1(s1, sN\{1})I1(s1, sN\{1})f1(s1, sN\{1}),
being f1(s1, sN\{1}) = (1, p) by Step 1. If agent 1 gets the good at (s1, sN\{1}), since
R1(s1, sN\{1}) coincide withR1(s1, sN\{1}), the price must be the same. That is, f1(s1, sN\{1}) =
(1, p) and then the proof of Step 2 ends. Otherwise, take l ∈ N\{1} such that fl(s1, sN\{1}) =
(1, pl). By condition (c) of gl, gl(s1, sN\{1}) < gl(s1, sN\{1}). Note that if pl < gl(s1, sN\{1}),
coalition {1, l} can ex post profitably deviate at (s1, sN\{1}) via (s1, sl) (agent l would strictly
gain while 1 remain indifferent). If pl ≥ gl(s1, sN\{1}), coalition {1, l} can ex post profitably
deviate at (s1, sN\{1}) via (s1, sl) (agent l would strictly gain). Thus, we have shown that
agent 1 gets the good and pays p at (s1, sN\{1}), for any s1 ∈ Θ1.

Step 3. For any s ∈ Θ such that s1 < s1 and there exists l ∈ N\{1} such that sl > sl, then
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agent 1 gets the good and pays p.
Let C = {i ∈ N\{1} : si > si}.
First, observe that if agent 1 gets the good at s in Step 3, by ex post incentive compatibility,
the price must be p. Otherwise, 1 could ex post profitably deviate at s via s1 if p′ > p,
or at (s1, sN\{1}) via s1 if p > p′. Consider the following two cases for which we obtain a
contradiction.

Step 3.1. Agent k ∈ N\{1} gets the good at s and sk > sk.
Take an agent j ∈ C\{k} who does not get the good at s and change her type from sj to sj.
If C\{k} is empty, we have that fk(sk, sN\{k}) = (1, p′) and by applying the same argument
as in Step 2 we would get fk(s) = (1, p′) which contradicts Step 2 applied to s. Otherwise,
by condition (c) of gj, gj(sj, sN\{j}) < gj(sj, sN\{j}). By ex post incentive compatibility,
fj(s) = fj(sj, sN\{j}) = (0, 0). Again, if C\{k, j} is empty, we have that fk(sk, sN\{k}) =
(1, p′) and by applying the same argument as in Step 2 we would get fk(s) = (1, p′) which
contradicts Step 2 applied to s. Otherwise, take j′ ∈ C\{k, j}, and by condition (c) of gj′ ,
gj′(sj, sN\{j}) < gj′(sj, sN\{j}). If for any j′ ∈ N\{k}, fj′(sj, sN\{j}) = fj′(sj, sN\{j}) = (0, 0),
we obtain that fk(sj, sN\{j}) = (1, p′) and we repeat the same argument in Step 3.1 for
l ∈ C\{k, j}. If for some j′, fj′(sj, sN\{j}) 6= (0, 0), we would get a contradiction to ex
post group incentive compatibility: {j, j′} would profitably deviate from (sj, sN\{j}) via
(sj, sj′) if p′ > gj(sj, sN\{j}) and from (sj, sN\{j}) via (sj, sj′) if p

′ ≤ gj(sj, sN\{j}). Thus,
fk(sj, sN\{j}) = (1, p′).
Repeating the same argument changing one by one the signal from sl to sl for each l ∈ C\{k},
we obtain that fk(sk, sN\{k}) = (1, p′).
Now, by using a similar argument as the one in Step 2 by replacing agent 1 by k, we can
show that fk(s) = (1, p′) which is a contradition to Step 2.
Step 3.2. Agent k ∈ N\{1} gets the good at s and sk = sk.
We obtain a contradiction using an argument similar to the one in Step 3.1.
Thus, agent 1 gets the good at any s and pays p, which ends the proof.

Example 8 (continued)
The following Lemma 2 is used in the proof of Proposition 11.

Lemma 2 For all s ∈ Θ, Rk(s′k, s−k) is a y-monotonic transform of Rk(s) for all s′k > sk,
k ∈ N and y ∈ A such that yk = (1, p), p ≥ 0.

Proof. Take s ∈ Θ, k ∈ N and y ∈ A such that yk = (1, p), p ≥ 0 and s′k > sk. Since gk
is non-decreasing in sk, gk(s′k, sN\{k}) ≥ gk(s) which means that agent k values the good in
signal profile (s′k, sN\{k}) at least as under profile s. Thus, (1, p) weakly improves its position
in Rk(s′k, sN\{k}) compared to its position in Rk(s). Formally, Rk(s

′
k, sN\{k}) is a y-monotonic

transform of Rk(s).

Proposition 11 If Θ is such that for each i ∈ N , gi is as described in Example 8, then Θ
is partially knit.
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Proof. Take any two pairs (x, θ), (z, θ̃) ∈ A× Θ such that C(θ, z, x) 6= ∅, #C(θ, z, x) = 2.
Some agent must get the good either in x or in z, otherwise C(θ, z, x) = ∅.
First, assume that the same agent i gets the good both in x and in z. Define θ′ =
(max{si, s̃i}, min{sj, s̃j}), S = S̃ = {max{si, s̃i}, min{sj, s̃j}} where I(S) = I(S̃) = {i, j}.
Note that for step h = 1, either si(S,1) = si(S̃,1) = si if si > s̃i or si(S,1) = si(S̃,1) = s̃i
if si < s̃i. Thus, either because there is no signal change or by Lemma 2, we obtain that
Ri(m

1(θ, S)) is an x-monotonic transform ofRi(m0(θ, S)) andRi(m1(θ̃, S̃)) is an z-monotonic
transform of Ri(m0(θ̃, S̃)). Note that for step 2, either si(S,h) = si(S̃,h) = sj if sj < s̃j or
si(S,h) = si(S̃,h) = s̃j if sj > s̃j. Thus, either because there is no signal change or by Lemma
1, we obtain in step 2 that Rj(m2(θ, S)) is an x-monotonic transform of Rj(m1(θ, S)) and
Rj(m

2(θ̃, S̃)) is a z-monotonic transform of Rj(m1(θ̃, S̃)). Thus, the passage from θ to θ′

through S is x-satisfactory and the passage from θ̃ to θ′ through S̃ is z-satisfactory.

Second, suppose that different agents get the good in x and z. Without loss of generality,
say that agent 1 gets the good in x while agent 2 gets it in z. Thus, alternatives x and z are
such that x1 = (1, px), z1 = (0, 0), x2 = (0, 0), z2 = (1, pz).
Now, we consider three cases, and for each one we define θ′ and the sequences of types S
and S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from
θ̃ to θ′ through S̃ is z-satisfactory.
Case 1. θ = (0, 1).
The conditions C(θ, z, x) 6= ∅ and C(θ, z, x) = N are satisfied since px > l and pz > l.
For any θ̃ define θ′ = θ̃. If θ̃ = (1, 1), let S = {θi(S,1) = 1}, I(S) = {1}, if θ̃ = (0, 0),
let S = {θi(S,1) = 0}, I(S) = {2}, and if θ̃ = (1, 0), let S = {θi(S,1) = 1, θi(S,2) = 0},
I(S) = {1, 2}. By applying Lemma 2, Lemma 1 or both, respectively, we prove that the
passage from θ to θ̃ = θ′ through S is x-satisfactory.
Case 2. θ = (1, 1).
For conditions C(θ, z, x) 6= ∅ and C(θ, z, x) = N to hold we must have either px > m and
pz ≤ m, or pz < m and px ≥ m. Suppose that the former holds. Otherwise, a similar proof
would follow.
If θ̃ = (0, 1), let θ′ = θ̃ and define S = {θi(S,1) = 0}, I(S) = {1}, and observe that
R1(m

1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m and pz ≤ m.
If θ̃ = (1, 0), let θ′ = θ̃ and define S = {θi(S,1) = 0}, I(S) = {2}, and observe that
R2(m

1(θ, S)) is an x-monotonic transform of R2(θ) by Lemma 1.
If θ̃ = (0, 0), let θ′ = (0, 1) and define S = {θi(S,1) = 0}, I(S) = {1}, S̃ = {θi(S̃,1) = 1},
I(S̃) = {2}. Again, observe that R1(m1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m and
pz ≤ m. Moreover, R2(m1(θ̃, S̃)) is a z-monotonic transform of R2(θ̃) since l < pz ≤ m.
Case 3. θ = (0, 0) and θ = (1, 0).
For both θ, g2(θ) = l. Since 2 ∈ C(θ, z, x) then pz ≤ l, being a contradiction to our hypoth-
esis in Example 8. Thus, this case must not be considered to check partial knitness.

Third, the last remaining possibility is one where in only one of the two alternatives, x or
z, some agent gets the good. Without loss of generality, suppose that agent 1 gets the good
in x. Note that for conditions C(θ, z, x) 6= ∅ and C(θ, z, x) = N to hold, for any θ ∈ Θ,
1 ∈ C(θ, z, x) since 2 ∈ C(θ, z, x).
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Now, we consider four cases, and for each one we define θ′ and the sequences of types S and
S̃, such that the passage from θ to θ′ through S is x-satisfactory and the passage from θ̃ to
θ′ through S̃ is z-satisfactory.
Case 1. θ = (0, 1).
Since 1 ∈ C(θ, z, x), px > l must be satisfied. For any θ̃ define θ′ = θ̃. If θ̃ = (1, 1), let
S = {θi(S,1) = 1} and I(S) = {1}, if θ̃ = (0, 0), let S = {θi(S,1) = 0} and I(S) = {2}, and
if θ̃ = (1, 0), let S = {θi(S,1) = 1, θi(S,2) = 0} and I(S) = {1, 2}. By applying either Lemma
2, Lemma 1 or both consecutively in this order, we prove that the passage from θ to θ̃ = θ′

through S is x-satisfactory.
Case 2. θ = (1, 1).
Since 1 ∈ C(θ, z, x), px > m must be satisfied.
If θ̃ = (0, 1), let θ′ = θ̃ and define S = {θi(S,1) = 0}, I(S) = {1}, and observe that
R1(m

1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m.
If θ̃ = (1, 0), let θ′ = θ̃ and define S = {θi(S,1) = 1}, I(S) = {2}, and observe that
R2(m

1(θ, S)) is an x-monotonic transform of R2(θ) by Lemma 1.
If θ̃ = (0, 0), let θ′ = θ̃ and define S = {θi(S,1) = 0, θi(S̃,2) = 0}, I(S) = {1, 2}. Again, observe
that R1(m1(θ, S)) is an x-reshuffl ing of R1(θ) since px > m. Moreover, R2(m2(θ, S)) is an
x-monotonic transform of R2(m1(θ, S)) by Lemma 1.
Case 3. θ = (0, 0).
Since 1 ∈ C(θ, z, x), px > l must be satisfied.
If θ̃ = (0, 1), let θ′ = θ and define S̃ = {θi(S̃,1) = 0}, I(S̃) = {2}, and observe that
R2(m

1(θ̃, S̃)) is a z-monotonic transform of R2(θ̃) by Lemma 1.
If θ̃ = (1, 0), let θ′ = θ and define S̃ = {θi(S̃,1) = 0}, I(S̃) = {1}, and observe that
R1(m

1(θ̃, S̃)) is a z-monotonic transform of R1(θ̃) by Lemma 1.
If θ̃ = (1, 1), let θ′ = θ and define S̃ = {θi(S̃,1) = 0, θi(S̃,2) = 0}, I(S) = {2, 1}, and observe
that, by Lemma 1, R2(m1(θ̃, S̃)) is a z-monotonic transform of R2(θ̃) and R1(m2(θ̃, S̃)) is a
z-monotonic transform of R1(m1(θ̃, S̃)).
Case 4. θ = (1, 0).
Since 1 ∈ C(θ, z, x), px > h must be satisfied.
If θ̃ = (0, 0), let θ′ = θ̃ = (0, 0) and define S = {θi(S,1) = 0}, I(S) = {1}, and observe that
R1(m

1(θ, S)) is an x-reshuffl ing of R1(θ) since px > h.
If θ̃ = (0, 1), let θ′ = (0, 0) and define S = {θi(S,1) = 0} and I(S) = {1}, S̃ = {θi(S̃,1) = 0} and
I(S̃) = {2}. Observe that R1(m1(θ, S)) is an x-reshuffl ing of R1(θ) since px > h. Moreover,
R2(m

2(θ̃, S̃)) is a z-monotonic transform of R2(m1(θ̃, S̃)) by Lemma 1.
If θ̃ = (1, 1), let θ′ = (0, 0) and define S = {θi(S,1) = 0} and I(S) = {1}, S̃ = {θi(S̃,1) =

0, θi(S̃,2) = 0} and I(S̃) = {1, 2}. Again, observe that R1(m1(θ, S)) is an x-reshuffl ing of

R1(θ) since px > m. Moreover, R1(m1(θ̃, S̃)) is a z-monotonic transform of R1(θ̃) and
R2(m

2(θ̃, S̃)) is a z-monotonic transform of R2(m1(θ̃, S̃)) by Lemma 1.
The proof of Proposition 11 ends.
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Lemma 3 If Θ is such that for each i ∈ N , gi is as described in Example 8, fp,p′ is non-
constant, ex post incentive compatible, and respectful.

Proof. By definition fp,p′ is not constant. To show that fp,p′ is ex post incentive compatible
we first observe that agent 1 can never strictly gain by deviating from any s ∈ Θ. For any
s2 ∈ Θ2, since g1(0, s2)) = l, g1(1, s2) ∈ {m,h}, and p ∈ (l,m), then f1(0, s2)P1(0, s2)f1(1, s2)
and f1(1, s2)P1(1, s2)f1(0, s2) holds where f1(0, s2) = (0, 0) and f1(1, s2) = (1, p). Similarly,
we can show that agent 2 can never strictly gain by deviating from any s ∈ Θ. For any
s1 ∈ Θ1, since g2(s1, 0) = l, g2(s1, 1) ∈ {m,h}, and p′ ∈ (l,m), then f2(s1, 0)R2(s1, 0)f2(s1, 1)
and f2(s1, 1)R2(s1, 1)f2(s1, 0) where f2(s1, 0) = (0, 0) and f2(s1, 1) ∈ {(0, 0), (1, p′)}. To
check respectfulness, observe that agent 1 is not indifferent between any pair of outcomes
obtained when she is the only one changing types. Concerning agent 2, observe that the
same holds if s1 = 0. For s1 = 1, f(1, 0) = f(1, 1). Thus, respectfulness holds.

Related to Remark 2

Example 9. For simplicity, let N = {1, 2}, Si = {0, 1} for all i ∈ N and l,m, h ∈ R+ with
0 = l < m < h. The agent’s preference formation rule is defined as in the general framework
but will now be based on a different auxiliary function that takes three possible values, low,
medium and high.
More formally,

gi(s) =


l if si = 0
m if si = 1 and sj = 0,
h if si = 1 and sj = 1.

Observe that for each agent i, gi satisfies (a) and the following condition:
(e) gi is non-decreasing in sj, for all j ∈ N\{i}.
Condition (e) establishes that the valuation of the good by agent i depends positively on

other agents’signals.
Now, we assert that the domain of types in Example, 9 is neither knit nor partially knit.

To do so, we define below a non-constant mechanism on this domain that is ex post incentive
compatible and respectful but it is not ex post group incentive compatible. Therefore, by
Theorem 2, the domain is not partially knit.
A mechanism fh,m is such that agent 1 gets the good and pays h if the signal of agent 2

is 0 or both agents’signals are 1 and agent 2 gets the good and pays m otherwise. Formally,
for θ ∈ {0, 1}2,

fh,m(θ) =


((1, h), (0, 0)) if s2 = 0,

((0, 0), (1,m)) if s1 = 0, s2 = 1, and
((1, h), (0, 0)) if s1 = 1 = s2

 .

Lemma 4 If Θ is such that for each i ∈ N , gi is as described in Example 9, fh,m is non-
constant, ex post incentive compatible, and respectful but violates ex post group incentive
compatibility.
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Proof. To check ex post incentive compatibility just observe that no single agent can strictly
gain by unilaterally deviations. To check respectfulness, we need to consider s and s′ such
that f(s) 6= f(s′), where only one agent changes her type and remains indifferent. Two
cases need to be checked. First, let s = (1, 1), s′ = (0, 1). Observe that neither R1(0, 1) is
a f(1, 1)-monotonic transform of R1(1, 1) nor R1(1, 1) is a f(0, 1)-monotonic transform of
R1(0, 1). Second, let s = (0, 1) and s′ = (0, 0). Again, neither R2(0, 0) is a f(0, 1)-monotonic
transform of R2(0, 1) nor R2(0, 1) is a f(0, 0)-monotonic transform of R2(0, 0). Thus these
cases do not need to be considered and respectfulness holds. To check that fh,m violates
ex post group incentive compatility, consider s = (1, 1), C = N , s′C = (0, 1). Note that
(0, 0) = f1(0, 1)I1(1, 1)f1(1, 1) = (1, h) and (1,m) = f2(0, 1)P2(1, 1)f2(1, 1) = (0, 0) which
means that coalition N can ex post profitably deviate under mechanism f at s ∈ Θ via s′C .
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